Данный онлайн калькулятор вычисляет векторное произведение векторов. Дается подробное решение. Для вычисления векторного произведения векторов введите координаты векторов в ячейки и нажимайте на кнопку «Вычислить.»
- Предупреждение
- Векторное произведение векторов
- Геометрические свойства векторного произведения векторов
- Векторное произведение векторов в декартовых координатах
- Векторное произведение векторов на примерах
- Онлайн калькулятор. Векторное произведение векторов
- Калькулятор для вычисления векторного произведения векторов
- Инструкция использования калькулятора для вычисления векторного произведения векторов
- Ввод даных в калькулятор для вычисления векторного произведения векторов
- Дополнительные возможности калькулятора для вычисления векторного произведения векторов
- Теория. Векторное произведение векторов
- Онлайн калькуляторы векторов
- Операции над векторами 19
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Векторное произведение векторов
Прежде, чем перейти к определению векторного произведения векторов, рассмотрим понятия упорядоченная тройка векторов, левая тройка векторов, правая тройка векторов.
Определение 1. Три вектора называются упорядоченой тройкой (или тройкой ), если указано, какой из этих векторов первый, какой второй и какой третьий.
Запись cba — означает — первым является вектор c, вторым является вектор b и третьим является вектор a.
Определение 2. Тройка некомпланарных векторов abc называется правой ( левой ), если при приведении к общему началу, эти векторы располагаются так, как расположены соответственно большой, несогнутый указательный и средний пальцы правой(левой) руки.
Определение 2 можно формулировать и по другому.
Определение 2′. Тройка некомпланарных векторов abc называется правой ( левой ), если при приведении к общему началу, вектор c располагается по ту сторону от плоскости, определяемой векторами a и b, откуда кратчайший поворот от a к b совершается против часовой стрелки (по часовой стрелке).
Тройка векторов abc, изображенная на рис. 1, является правой, а тройка abc изображенная на рис. 2, является левой.
Если две тройки векторов являются правыми либо левыми, то говорят, что они одной ориентации. В противном случае говорят, что они противоположной ориентации.
Определение 3. Декартовая или афинная система координат называется правой ( левой ), если три базисных вектора образуют правую (левую) тройку.
Для определенности, в дальнейшем мы будем рассматривать только правые системы координат.
Определение 4. Векторным произведением вектора a на вектор b называется вектор с, обозначаемый символом c=[ab] (или c=[a,b], или c=a×b) и удовлетворяющий следующим трем требованиям:
- длина вектора с равна произведению длин векторов a и b на синус угла φ между ними:
|c|=|[ab]|=|a||b|sinφ; (1) - вектор с ортогонален к каждому из векторов a и b;
- вектор c направлен так, что тройка abc является правой.
Векторное произведение векторов обладает следующими свойствами:
- [ab]=−[ba] ( антиперестановочность сомножителей);
- [(λa)b]=λ[ab] ( сочетательность относительно числового множителя);
- [(a+b)c]=[ac]+[bc] ( распределительность относительно суммы векторов);
- [aa]=0 для любого вектора a.
Геометрические свойства векторного произведения векторов
Теорема 1. Для коллинеарности двух векторов необходимо и достаточно равенство нулю их векторного произведения.
Доказательство. Необходимость. Пусть векторы a и b коллинеарны. Тогда угол между ними 0 или 180° и sinφ=sin180=sin 0=0. Следовательно, учитывая выражение (1), длина вектора c равна нулю. Тогда c нулевой вектор.
Достаточность. Пусть векторное произведение векторов a и b навно нулю: [ab]=0. Докажем, что векторы a и b коллинеарны. Если хотя бы один из векторов a и b нулевой, то эти векторы коллинеарны (т.к. нулевой вектор имеет неопределенное направление и его можно считать коллинеарным любому вектору).
Если же оба вектора a и b ненулевые, то |a|>0, |b|>0. Тогда из [ab]=0 и из (1) вытекает, что sinφ=0. Следовательно векторы a и b коллинеарны.
Теорема 2. Длина (модуль) векторного произведения [ab] равняется площади S параллелограмма, построенного на приведенных к общему началу векторах a и b.
Доказательство. Как известно, площадь параллелограмма равна произведению смежных сторон этого параллелограмма на синус угла между ними. Следовательно:
S=|[ab]|=|a||b|sinφ. | (2) |
Векторное произведение векторов в декартовых координатах
Теорема 3. Пусть два вектора a и b определены своими декартовыми прямоугольными координатами
a=<x1, y1, z1>, b=<x2, y2, z2>. |
Тогда векторное произведение этих векторов имеет вид:
[ab]=<y1z2—y2z1, z1x2−z2x1, x1y2−x2y1>. | (3) |
Для запоминания формулы (3) удобно представить векторное произведение векторов в виде определителя:
Раскрывая определитель по элементам первой строки мы получим разложение вектора a×b по базису i, j, k, которое эквивалентно формуле (3).
Доказательство теоремы 3. Составим все возможные пары из базисных векторов i, j, k и посчитаем их векторное произведение. Надо учитывать, что базисные векторы взаимно ортогональны, образуют правую тройку и имеют единичную длину (иными словами можно предполагать, что i=, j=, k=). Тогда имеем:
(4) |
Из последнего равенства и соотношений (4), получим:
которая эквивалентна равенству (3).
Векторное произведение векторов на примерах
Пример 1. Найти векторное произведение векторов [ab], где
, . |
Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b:
. |
Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов a и b:
. |
Таким образом, результатом векторного произведения векторов a и b будет вектор:
. |
Пример 2. Найти векторное произведение векторов [ab], где вектор a представлен двумя точками. Начальная точка вектора a: , конечная точка вектора a: , вектор b имеет вид .
Р е ш е н и е. Переместим первый вектор на начало координат. Для этого вычтем из соответствующих координат конечной точки координаты начальной точки:
. |
Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b:
. |
Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов a и b:
. |
Таким образом, результатом векторного произведения векторов a и b будет вектор:
Онлайн калькулятор. Векторное произведение векторов
Этот онлайн калькулятор позволит вам очень просто найти векторное произведение двух векторов.
Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление векторного произведения векторов и закрепить пройденный материал.
Калькулятор для вычисления векторного произведения векторов
Инструкция использования калькулятора для вычисления векторного произведения векторов
Ввод даных в калькулятор для вычисления векторного произведения векторов
В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора для вычисления векторного произведения векторов
- Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.
Теория. Векторное произведение векторов
Определение Векторное произведение двух векторов a = < ax ; ay ; az > и b = < bx ; by ; bz > в декартовой системе координат — это вектор, значение которого можно вычислить следующим образом:
a × b = | i | j | k | = i ( aybz — azby ) — j ( axbz — azbx ) + k ( axby — aybx ) |
ax | ay | az | ||
bx | by | bz |
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Онлайн калькуляторы векторов
Данный раздел содержит калькуляторы, позволяющие выполнять все основные действия над векторами. В частности, с помощью данных калькуляторов можно вычислять скалярное, векторное и смешанное произведения векторов, раскладывать вектора по базису, проверять их ортогональность, компланарность и др. Всего представлено 19 калькуляторов и для каждого предусмотрено подробное решение соответствующей задачи.
Операции над векторами 19
Сложение векторов Калькулятор позволяет складывать вектора, заданные в координатной форме.
Разность векторов Калькулятор позволяет вычитать вектора, заданные в координатной форме.
Умножение вектора на скаляр Калькулятор находит произведение вектора на скаляр.
Скалярное произведение векторов Калькулятор позволяет найти скалярное произведение двух векторов.
Векторное произведение векторов Калькулятор позволяет найти векторное произведение двух векторов.
Смешанное произведение векторов Калькулятор находит смешанное произведение трех векторов.
Модуль (длина) вектора Калькулятор находит модуль (длину) вектора с описанием подробного решения на русском языке.
Угол между векторами Калькулятор позволяет найти угол между векторами. Подробное решение также имеется.
Направляющие косинусы вектора Калькулятор позволяет найти направляющие косинусы вектора с подробным решением на русском языке.
Проекция вектора Калькулятор вычисляет проекцию вектора на ось или на другой вектор.
Площадь треугольника, построенного на векторах Калькулятор вычисляет площадь треугольника, построенного на векторах с описанием подробного решения на русском языке.
Площадь параллелограмма, построенного на векторах Калькулятор позволяет вычислить площадь параллелограмма, построенного на векторах с описанием подробного решения на русском языке.
Объём параллелепипеда, построенного на векторах Калькулятор позволяет найти объём параллелепипеда, который построен на трёх векторах.
Проверить ортогональность векторов Калькулятор позволяет проверить ортогональность векторов с описанием подробного решения на русском языке.
Проверить коллинеарность векторов Калькулятор позволяет проверить коллинеарность двух векторов.
Проверить компланарность векторов Калькулятор предназначен для проверки компланарности трёх векторов.
Проверить образует ли система векторов базис Калькулятор позволяет проверить образует ли система векторов базис.
Разложить вектор по базису Калькулятор позволяет разложить вектор по базису с описанием подробного решения на русском языке.
Мы в социальных сетях:
Группа ВКонтакте | Бот в Телеграмме