Как построить центр описанной окружности в треугольнике

Please wait.

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

We are checking your browser. mathvox.ru

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

Видео:Строим вписанную в данный треугольник окружность (Задача 2).Скачать

Строим вписанную в данный треугольник окружность (Задача 2).

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6d2ac6c89dc575a7 • Your IP : 85.95.179.65 • Performance & security by Cloudflare

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Как построить центр описанной окружности в треугольникеСерединный перпендикуляр к отрезку
Как построить центр описанной окружности в треугольникеОкружность описанная около треугольника
Как построить центр описанной окружности в треугольникеСвойства описанной около треугольника окружности. Теорема синусов
Как построить центр описанной окружности в треугольникеДоказательства теорем о свойствах описанной около треугольника окружности

Как построить центр описанной окружности в треугольнике

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Как построить центр описанной окружности в треугольнике

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Как построить центр описанной окружности в треугольнике

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Как построить центр описанной окружности в треугольнике

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Как построить центр описанной окружности в треугольнике

Как построить центр описанной окружности в треугольнике

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Как построить центр описанной окружности в треугольнике

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Как построить центр описанной окружности в треугольнике

Как построить центр описанной окружности в треугольнике

Полученное противоречие и завершает доказательство теоремы 2

Видео:Центр окружности описанной вокруг треугольникаСкачать

Центр окружности описанной вокруг треугольника

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Как построить центр описанной окружности в треугольнике

Видео:Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Как построить центр описанной окружности в треугольнике,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Как построить центр описанной окружности в треугольнике

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Как построить центр описанной окружности в треугольникеВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаКак построить центр описанной окружности в треугольникеОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиКак построить центр описанной окружности в треугольникеЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиКак построить центр описанной окружности в треугольникеЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовКак построить центр описанной окружности в треугольнике
Площадь треугольникаКак построить центр описанной окружности в треугольнике
Радиус описанной окружностиКак построить центр описанной окружности в треугольнике
Серединные перпендикуляры к сторонам треугольника
Как построить центр описанной окружности в треугольнике

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаКак построить центр описанной окружности в треугольнике

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиКак построить центр описанной окружности в треугольнике

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиКак построить центр описанной окружности в треугольнике

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиКак построить центр описанной окружности в треугольнике

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовКак построить центр описанной окружности в треугольнике

Для любого треугольника справедливы равенства (теорема синусов):

Как построить центр описанной окружности в треугольнике,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаКак построить центр описанной окружности в треугольнике

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиКак построить центр описанной окружности в треугольнике

Для любого треугольника справедливо равенство:

Как построить центр описанной окружности в треугольнике

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Как построить центр описанной окружности в треугольнике

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Как построить центр описанной окружности в треугольнике

Как построить центр описанной окружности в треугольнике.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Как построить центр описанной окружности в треугольнике

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:Окружность, описанная около треугольника. Как найти центр и радиус. Геометрия 7-8 классСкачать

Окружность, описанная около треугольника. Как найти центр и радиус. Геометрия 7-8 класс

Уравнение описанной окружности

Как составить уравнение описанной около треугольника окружности по координатам его вершин? Как найти координаты центра описанной окружности? Как найти радиус описанной окружности, зная координаты вершин треугольника?

Решение всех этих задач сводится к одной — написать уравнение окружности, проходящей через три данные точки. Для этого достаточно подставить координаты точек (вершин треугольника) в уравнение окружности. Получим систему из трёх уравнений с тремя неизвестными: координатами центра и радиусом окружности.

Составить уравнение описанной окружности для треугольника с вершинами в точках A(2;1), B(6;3), C(9;2).

Подставив координаты вершин треугольника в уравнение окружности

Как построить центр описанной окружности в треугольнике

получим систему уравнений

Как построить центр описанной окружности в треугольнике

Вычтем из первого уравнения системы второе:

Как построить центр описанной окружности в треугольнике

Как построить центр описанной окружности в треугольнике

Как построить центр описанной окружности в треугольнике

Как построить центр описанной окружности в треугольнике

Теперь из второго уравнения системы вычтем третье:

Как построить центр описанной окружности в треугольнике

Как построить центр описанной окружности в треугольнике

Как построить центр описанной окружности в треугольнике

Приравняем правые части равенств b=-2a+10 и b=3a-20:

Как построить центр описанной окружности в треугольнике

Как построить центр описанной окружности в треугольнике

Как построить центр описанной окружности в треугольнике

Как построить центр описанной окружности в треугольнике

Подставим в первое уравнение системы a=6 и b=-2:

Как построить центр описанной окружности в треугольнике

Как построить центр описанной окружности в треугольнике

Как построить центр описанной окружности в треугольнике

a и b — координаты центра окружности, R — её радиус. Таким образом, точка (6;-2) — центр описанной около треугольника ABC окружности, радиус R=5, а уравнение описанной окружности

Как построить центр описанной окружности в треугольнике

Для решения аналогичной задачи для четырёхугольника либо многоугольника достаточно знать координаты трёх его вершин.

📺 Видео

Построить окружность, описанную около треугольникаСкачать

Построить окружность, описанную около треугольника

Вписанная и описанная около равнобедренного треугольника, окружностьСкачать

Вписанная и описанная около равнобедренного треугольника,  окружность

Центр описанной окружности.Скачать

Центр описанной окружности.

88 Центр описанной окружности треугольникаСкачать

88 Центр описанной окружности треугольника

Вписанная и описанная окружностиСкачать

Вписанная и описанная окружности

Формулы для радиуса окружности #shortsСкачать

Формулы для радиуса окружности #shorts

№711. Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. ДляСкачать

№711. Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. Для

Свойство окружности, описанной около равнобедренного треугольникаСкачать

Свойство окружности, описанной около равнобедренного треугольника

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

Диагностическая работа-1 в формате ОГЭ. Задача-25Скачать

Диагностическая работа-1 в формате ОГЭ. Задача-25

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.
Поделиться или сохранить к себе: