В параллелепипеде abcda1b1c1d1 разложите вектор aa1 по векторам d1a1 d1c1 a1c

Правило параллелепипеда. Разложение вектора

Вы будете перенаправлены на Автор24

Видео:№359. Дан параллелепипед ABCDA1B1C1D1. а) Разложите вектор BD1 по векторам ВА, ВС и ВВ1.Скачать

№359. Дан параллелепипед ABCDA1B1C1D1. а) Разложите вектор BD1 по векторам ВА, ВС и ВВ1.

Правило параллелепипеда

Для правила сложения трех векторов рассмотрим следующую задачу.

Дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Доказать, что $overrightarrow+overrightarrow+overrightarrow=overrightarrow$

В параллелепипеде abcda1b1c1d1 разложите вектор aa1 по векторам d1a1 d1c1 a1c

Доказательство.

Воспользуемся свойством правила треугольника сложения двух векторов $overrightarrow+overrightarrow=overrightarrow$, получим:

Так как $overrightarrow=overrightarrow, overrightarrow=overrightarrow$

Из этой задачи получаем следующее правило для нахождения сложения трех векторов. Чтобы найти сумму трех векторов $overrightarrow,overrightarrow и overrightarrow$ нужно от произвольной точки $O$ отложить векторы $overrightarrow=overrightarrow$, $overrightarrow=overrightarrow$ и $overrightarrow=overrightarrow$ и построим параллелепипед на этих векторах. Тогда вектор диагонали $overrightarrow$ и будет суммой этих трех векторов. Это правило называется правилом параллелепипеда для сложения трех векторов.

Видео:№361. Диагонали параллелепипеда ABCDA1B1C1D1 пересекаются в точке О. Разложите векторыСкачать

№361. Диагонали параллелепипеда ABCDA1B1C1D1 пересекаются в точке О. Разложите векторы

Разложение вектора по двум неколлинеарным векторам

Вспомним сначала, какие векторы называются компланарными.

Два вектора, которые параллельны одной плоскости называются компланарными.

Произвольный вектор $overrightarrow

$ можно разложить по трем некомпланарным векторам $overrightarrow, overrightarrow$ и $overrightarrow$ с единственными коэффициентами разложения.

Математически это можно записать следующим образом

Доказательство.

Существование: Пусть нам даны три некомпланарных вектора $overrightarrow, overrightarrow$ и $overrightarrow$. Выберем произвольную точку $O$ и построим следующие векторы:

[overrightarrow=overrightarrow, overrightarrow=overrightarrow, overrightarrow=overrightarrow и overrightarrow

=overrightarrow]

Рассмотрим следующий рисунок:

В параллелепипеде abcda1b1c1d1 разложите вектор aa1 по векторам d1a1 d1c1 a1c

Произведем следующие дополнительные построения. Проведем через точку $P$ прямую, которая будет параллельна вектору $overrightarrow$. Пусть эта прямая пересекает плоскость $OAB$ в точке $P_1$. Далее, проведем через точку $P_1$ прямую, которая будет параллельна вектору $overrightarrow$. Пусть эта прямая пересекает прямую $OA$ в точке $P_2$ (смотри рисунок выше).

Воспользуемся свойством правила треугольника сложения двух векторов $overrightarrow+overrightarrow=overrightarrow$, получим:

Так как векторы $overrightarrow$ и $overrightarrow$ коллинеарны, то

Так как векторы $overrightarrow

$ и $overrightarrow$ коллинеарны, то

Так как векторы $overrightarrow

$ и $overrightarrow$ коллинеарны, то

Тогда, получаем, что

Существование разложения доказано.

Единственность: Предположим противное. Пусть существует еще одно разложение вектора $overrightarrow

$ по векторам $overrightarrow, overrightarrow$ и $overrightarrow$:

Вычтем эти разложения друг из друга

Из этого получаем

Теорема доказана.

Геометрия. 10 класс

Компланарные векторы

Подчеркните верное утверждение:

1) Любые два вектора компланарны.

2) Любые три вектора компланарны.

3) Если три вектора компланарны, то один из них нулевой.

4) Если векторы компланарны, то они коллинеарны.

Компланарные и некомпланарные векторы

В параллелепипеде abcda1b1c1d1 разложите вектор aa1 по векторам d1a1 d1c1 a1c

компланарные

некомпланарные

Компланарные векторы

Точки А, В и С лежат на окружности, а точка М не лежит в плоскости этой окружности. Тогда векторы $overrightarrow, overrightarrow$ и $overrightarrow$

Компланарные и некомпланарные векторы

Укажите вывод, который следует из данных утверждений

1) Точки А, В и С не лежат на одной прямой, а точка O не лежит в плоскости (АВС). Тогда векторы

$overrightarrow, overrightarrow, overrightarrow$

2) $overrightarrow=xcdot overrightarrow+ycdot overrightarrow$

Тогда векторы $overrightarrow, overrightarrow$, и $overrightarrow$

Компланарные векторы. Векторный метод решения задач

Решите задачу и введите правильный ответ:

В параллелепипеде abcda1b1c1d1 разложите вектор aa1 по векторам d1a1 d1c1 a1c

Разложение векторов

В параллелепипеде ABCDA1B1C1D1 точка M — середина ребра CC1. Разложите вектор AМ по векторам AB, AD, AA1.

Выберите верное утверждение и выделите его цветом:

Доказательство теоремы

Докажите что векторы $overrightarrow,overrightarrow<A_B_>$ и $overrightarrow$ компланарны.

В параллелепипеде abcda1b1c1d1 разложите вектор aa1 по векторам d1a1 d1c1 a1c

Восстановите последовательность в доказательстве:

Отложим от точки А вектор $overrightarrow$,равный вектору $overrightarrow<A_B_>$

Выбираем точку А и отложим от неё векторы

Векторы $overrightarrow, overrightarrow$ и $overrightarrow$ лежат в одной плоскости, значит они компланарны.

Отложим от точки А вектор $overrightarrow$,равный вектору $overrightarrow$

Компланарные векторы. Векторный метод решения задач

В параллелепипеде abcda1b1c1d1 разложите вектор aa1 по векторам d1a1 d1c1 a1c

В параллелепипеде $ABCDA_ B_ C_ D_$, $О$ — точка пересечения диагоналей. Разложите вектор $AО$ по векторам $AB$, $AD$ и $AA_$.

Выберите правильный вариант ответа:

Компланарные векторы. Векторный метод решения задач

В параллелепипеде abcda1b1c1d1 разложите вектор aa1 по векторам d1a1 d1c1 a1c

DABC – тетраэдр. О – точка пересечения медиан грани BDC. Тогда вектор $overrightarrow$ равен:

Выберите правильный вариант ответа:

Компланарные векторы. Векторный метод решения задач

Восстановите последовательность элементов в доказательстве утверждения поставьте правильную последовательность этапов:

Доказать, что если М – точка пересечения медиан треугольника АВС и О — произвольная точка пространства, то выполняется равенство

В параллелепипеде abcda1b1c1d1 разложите вектор aa1 по векторам d1a1 d1c1 a1c

Разделим обе части на 3, получим $overrightarrow=frac(overrightarrow+overrightarrow+overrightarrow)$

Так как $overrightarrow+overrightarrow+overrightarrow=overrightarrow$

Запишем следующие векторные равенства: $overrightarrow=overrightarrow+overrightarrowoverrightarrow=overrightarrow+overrightarrowoverrightarrow =overrightarrow+overrightarrow$

Сложив эти равенства по частям, получаем: $overrightarrow+overrightarrow+overrightarrow=3overrightarrow+(overrightarrow+overrightarrow+overrightarrow)$

🔍 Видео

№339. Дан параллелепипед ABCDAСкачать

№339. Дан параллелепипед ABCDA

Правило параллелепипеда для векторовСкачать

Правило параллелепипеда для векторов

№357. Даны параллелограммы ABCD и AB1C1D1. Докажите, что векторы ВВ1, СС1 и DD1 компланарны.Скачать

№357. Даны параллелограммы ABCD и AB1C1D1. Докажите, что векторы ВВ1, СС1 и DD1 компланарны.

№358. Дан параллелепипед ABCDA1B1C1D1. Назовите вектор, начало и конец которого являются вершинамиСкачать

№358. Дан параллелепипед ABCDA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами

№330. Нарисуйте параллелепипед ABCDA1B1C1D1 и обозначьте векторы C1D1, BA1Скачать

№330. Нарисуйте параллелепипед ABCDA1B1C1D1 и обозначьте векторы C1D1, BA1

№327. На рисунке 97 изображен параллелепипед ABCDA1B1C1D1. Назовите вектор, нСкачать

№327. На рисунке 97 изображен параллелепипед ABCDA1B1C1D1. Назовите вектор, н

Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

№76. Дан параллелепипед ABCDA1B1C1D1. Докажите, что AC||A1C1 и BD||B1D1.Скачать

№76. Дан параллелепипед ABCDA1B1C1D1. Докажите, что AC||A1C1 и BD||B1D1.

10 класс, 44 урок, Правило параллелепипедаСкачать

10 класс, 44 урок, Правило параллелепипеда

№355. Дан параллелепипед ABCDA1B1C1D1. Какие из следующих трех векторов компланарныСкачать

№355. Дан параллелепипед ABCDA1B1C1D1. Какие из следующих трех векторов компланарны

№116. Дан параллелепипед ABCDA1B1C1D1. Докажите, что: а) DC⊥B1C1, и AB⊥A1DСкачать

№116. Дан параллелепипед ABCDA1B1C1D1. Докажите, что: а) DC⊥B1C1, и AB⊥A1D

№786. Отрезки AA1, ВВ1 и СС1 — медианы треугольника ABC. Выразите векторы AA1, BB1, СС1Скачать

№786. Отрезки AA1, ВВ1 и СС1 — медианы треугольника ABC. Выразите векторы AA1, BB1, СС1

№82. Изобразите параллелепипед ABCDA1B1C1D1 и отметьте внутреннюю точку М грани АА1В1ВСкачать

№82. Изобразите параллелепипед ABCDA1B1C1D1 и отметьте внутреннюю точку М грани АА1В1В

№78. На рисунке 42 изображен параллелепипед ABCDA1B1C1D1, на ребрах которого отмечены точки МСкачать

№78. На рисунке 42 изображен параллелепипед ABCDA1B1C1D1, на ребрах которого отмечены точки М

№110. Докажите, что в параллелепипеде ABCDA1B1C1D1 плоскость A1DB параллельна плоскости D1CB1.Скачать

№110. Докажите, что в параллелепипеде ABCDA1B1C1D1 плоскость A1DB параллельна плоскости D1CB1.

№402. Даны координаты четырех вершин куба ABCDA1B1C1D1: А (0; 0; 0), В (0; 0; 1), D (0; 1; 0)Скачать

№402. Даны координаты четырех вершин куба ABCDA1B1C1D1: А (0; 0; 0), В (0; 0; 1), D (0; 1; 0)
Поделиться или сохранить к себе: