В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

Четырехугольники, вписанные в окружность. Теорема Птолемея
В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусовВписанные четырехугольники и их свойства
В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусовТеорема Птолемея

Видео:Вписанный четырехугольникСкачать

Вписанный четырехугольник

Вписанные четырёхугольники и их свойства

Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .

В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .

Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .

Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.

Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).

В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.

Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.

Теорема 2 доказана.

Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

ФигураРисунокСвойство
Окружность, описанная около параллелограммаВ любом вписанном четырехугольнике суммы противоположных углов равны 180 градусовОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромбаВ любом вписанном четырехугольнике суммы противоположных углов равны 180 градусовОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапецииВ любом вписанном четырехугольнике суммы противоположных углов равны 180 градусовОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоидаВ любом вписанном четырехугольнике суммы противоположных углов равны 180 градусовОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольникВ любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

Окружность, описанная около параллелограмма
В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусовОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусовОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусовОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусовОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов
Окружность, описанная около параллелограмма
В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность, описанная около ромбаВ любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность, описанная около трапецииВ любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность, описанная около дельтоидаВ любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Произвольный вписанный четырёхугольникВ любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

Видео:16 задача ОГЭ: четырёхугольник, вписанный в окружность; подобные треугольникиСкачать

16 задача ОГЭ: четырёхугольник, вписанный в окружность; подобные треугольники

Теорема Птолемея

Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.

Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).

В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

Докажем, что справедливо равенство:

В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).

В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

откуда вытекает равенство:

В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов(1)

Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Видео:Все типы 24 задание 2 часть ОГЭ ПО МАТЕМАТИКЕ 2023 УмскулСкачать

Все типы 24 задание 2 часть ОГЭ ПО МАТЕМАТИКЕ 2023 Умскул

В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

ВПИСАННЫЕ И ОПИСАННЫЕ МНОГОУГОЛЬНИКИ,

§ 106. СВОЙСТВА ВПИСАННЫХ И ОПИСАННЫХ ЧЕТЫРЁХУГОЛЬНИКОВ.

Теорема 1. Сумма противоположных углов вписанного четырёхугольника равна 180°.

Пусть в окружность с центром О вписан четырёхугольник ABCD (черт. 412). Требуется доказать, что / А + / С = 180° и / В + / D = 180°.

В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

/ А, как вписанный в окружность О, измеряется 1 /2 В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусовBCD.
/ С, как вписанный в ту же окружность, измеряется 1 /2 В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусовBAD.

Следовательно, сумма углов А и С измеряется полусуммой дуг BCD и BAD в сумме же эти дуги составляют окружность, т. е. имеют 360°.
Отсюда / А + / С = 360° : 2 = 180°.

Аналогично доказывается, что и / В + / D = 180°. Однако это можно вывести и иным путём. Мы знаем, что сумма внутренних углов выпуклого четырёхугольника равна 360°. Сумма углов А и С равна 180°, значит, на сумму других двух углов четырёхугольника остаётся тоже 180° .

Теорема 2 (обратная). Если в четырёхугольнике сумма двух противоположных углов равна 180°, то около такого четырёхугольника можно описать окружность.

Пусть сумма противоположных углов четырёхугольника ABCD равна 180°, а именно
/ А + / С = 180° и / В + / D = 180° (черт. 412).

Докажем, что около такого четырёхугольника можно описать окружность.

Доказательство. Через любые 3 вершины этого четырёхугольника можно провести окружность, например через точки А, В и С. Где будет находиться точка D?

Точка D может занять только одно из следующих трёх положений: оказаться внутри круга, оказаться вне круга, оказаться на окружности круга.

В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

Допустим, что вершина окажется внутри круга и займёт положение D’ (черт. 413). Тогда в четырёхугольнике ABCD’ будем иметь:

Продолжив сторону AD’ до пересечения с окружностью в точке Е и соединив точки Е и С, получим вписанный четырёхугольник АВСЕ, в котором по прямой теореме

Из этих двух равенств следует:

но этого быть не может, так как / D’, как внешний относительно треугольника CD’E, должен быть больше угла Е. Поэтому точка D не может оказаться внутри круга.

Так же доказывается, что вершина D не может занять положение D» вне круга (черт. 414).

Остаётся признать, что вершина D должна лежать на окружности круга, т. е. совпасть с точкой Е, значит, около четырёхугольника ABCD можно описать окружность.

Следствия. 1. Вокруг всякого прямоугольника можно описать окружность.

2. Вокруг равнобедренной трапеции можно описать окружность.

В обоих случаях сумма противоположных углов равна 180°.

Теорема 3. В описанном четырёхугольнике суммы противоположных сторон равны. Пусть четырёхугольник ABCD описан около окружности (черт. 415), т. е. стороны его АВ, ВС, CD и DA — касательные к этой окружности.

В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

Требуется доказать, что АВ + CD =AD + ВС. Обозначим точки касания буквами М, N, К, Р, На основании свойств касательных, проведённых к окружности из одной точки (§ 75), имеем:

АР = АК;
ВР = ВМ;
DN = DK;
CN = СМ.

Сложим почленно эти равенства. Получим:

АР + ВР + DN + CN = АК + ВМ +DK + СМ,

т. е. АВ + CD = AD + ВС, что и требовалось доказать.

1. Во вписанном четырёхугольнике два противоположных угла относятся как 3 : 5,
а другие два относятся как 4 : 5. Определить величину этих углов.

2. В описанном четырёхугольнике сумма двух противоположных сторон равна 45 см. Остальные две стороны относятся как 0,2 : 0,3. Найти длину этих сторон.

Видео:3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Сумма углов четырехугольника

Свойства

  1. Сумма углов четырехугольника равна 360°.
    ∠A + ∠B + ∠C + ∠D = 360°.
    В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов
  2. Если четырехугольник правильный, то каждый угол по 90°
    и этот четырехугольник является квадратом.
    ∠A = ∠B = ∠C = ∠D, ⇒ ∠A = ∠B = ∠C = ∠D = 90°,
    ABCD — квадрат.
    В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов
  3. Сумма противоположных углов четырехугольника равна 180°,
    если около четырехугольника описана окружность.
    ∠A + ∠С = ∠В + ∠D = 180°.
    В любом вписанном четырехугольнике суммы противоположных углов равны 180 градусов

Такие четырехугольники называют вписанными.

Это все виды четырехугольников,
которые изучаются в школьном
курсе по геометрии.

🌟 Видео

Геометрия 8 класс (Урок№33 - Описанная окружность.)Скачать

Геометрия 8 класс (Урок№33 - Описанная окружность.)

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.

11 класс, 43 урок, Вписанный четырехугольникСкачать

11 класс, 43 урок, Вписанный четырехугольник

Геометрия Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можноСкачать

Геометрия Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно

Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис ТрушинСкачать

Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис Трушин

Задание 25 Вписанный четырёхугольникСкачать

Задание 25 Вписанный четырёхугольник

Математика ОГЭ Задание 25 Первый признак подобияСкачать

Математика ОГЭ  Задание 25 Первый признак подобия

Вписанный в окружность четырёхугольник.Скачать

Вписанный в окружность четырёхугольник.

8 класс. Четырехугольник и окружностьСкачать

8 класс.  Четырехугольник  и окружность

ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 классСкачать

ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 класс

Уроки геометрии. Чему равна сумма углов четырехугольника?Скачать

Уроки геометрии. Чему равна сумма углов четырехугольника?

Дикая прямая Симсона. Опровержение софизмаСкачать

Дикая прямая Симсона. Опровержение софизма

Тема 9. Вписанные и описанные четырехугольникиСкачать

Тема 9. Вписанные и описанные четырехугольники

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Геометрия. 9 класс. Вписанные и описанные четырехугольники /20.04.2021/Скачать

Геометрия. 9 класс. Вписанные и описанные четырехугольники /20.04.2021/

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.
Поделиться или сохранить к себе: