В любом описанном четырехугольнике суммы длин противолежащих сторон

Описанные четырехугольники

Определение 1 . Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником .

В любом описанном четырехугольнике суммы длин противолежащих сторон

Замечание . В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.

Теорема 1 . Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.

Доказательство . Рассмотрим четырёхугольник ABCD , описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).

В любом описанном четырехугольнике суммы длин противолежащих сторон

AH = AE, BF = BE, CF = CG, DH = DG,

Складывая эти равенства, получим:

AH + BF + CF + DH =
= AD + BC,
AE + BE + CG + DG =
= AB + CD,

то справедливо равенство

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Доказательство . Рассмотрим четырёхугольник ABCD , длины сторон которого удовлетворяют равенству

и проведём биссектрисы углов BAD и CDA . Обозначим точку пересечения этих биссектрис буквой O , и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).

В любом описанном четырехугольнике суммы длин противолежащих сторон

Следовательно, справедливы равенства

из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH , касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:

Окружность касается касается стороны BC (рис.4).

В любом описанном четырехугольнике суммы длин противолежащих сторон

В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.

Окружность не касается стороны BC .

В этом случае касательная, проведенная к окружности из точки B , пересекает прямую DC в точке K , и возможны два случая:

    Точка K лежит между точками C и D (рис.5)

В любом описанном четырехугольнике суммы длин противолежащих сторон

В любом описанном четырехугольнике суммы длин противолежащих сторон

Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:

В любом описанном четырехугольнике суммы длин противолежащих сторон

В любом описанном четырехугольнике суммы длин противолежащих сторон

Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольника неравенству треугольника неравенству треугольника . Полученное противоречие доказывает, что случай 2а невозможен.

Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.

Итак, возможен и реализуется лишь случай 1.

Из доказательства теоремы 2 непосредственно вытекает

Теорема 3 . Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.

В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.

Примеры описанных четырёхугольников

ФигураРисунокУтверждение
РомбВ любом описанном четырехугольнике суммы длин противолежащих сторонВ любой ромб можно вписать окружность
КвадратВ любом описанном четырехугольнике суммы длин противолежащих сторонВ любой квадрат можно вписать окружность
ПрямоугольникВ любом описанном четырехугольнике суммы длин противолежащих сторонВ прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом
ПараллелограммВ любом описанном четырехугольнике суммы длин противолежащих сторонВ параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом
ДельтоидВ любом описанном четырехугольнике суммы длин противолежащих сторонВ любой дельтоид можно вписать окружность
ТрапецияВ любом описанном четырехугольнике суммы длин противолежащих сторонВ трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований
Ромб
В любом описанном четырехугольнике суммы длин противолежащих сторон
КвадратВ любом описанном четырехугольнике суммы длин противолежащих сторон

В любой квадрат можно вписать окружность

ПрямоугольникВ любом описанном четырехугольнике суммы длин противолежащих сторон

В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом

ПараллелограммВ любом описанном четырехугольнике суммы длин противолежащих сторон

В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом

ДельтоидВ любом описанном четырехугольнике суммы длин противолежащих сторон

ТрапецияВ любом описанном четырехугольнике суммы длин противолежащих сторон

В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований

Видео:ЕГЭ 2023 вариант 1 задача 1Скачать

ЕГЭ 2023 вариант 1 задача 1

Вписанная окружность

Окружность вписанная в многоугольник — это окружность, которая касается всех сторон многоугольника. Центр вписанной окружности лежит внутри многоугольника, в который она вписана. Описанный около окружности многоугольник — это многоугольник, в который вписана окружность. На рисунке 1 четырехугольник АВСD описан около окружности с центром О, а четырехугольник АЕКD не является описанным около этой окружности, так как сторона ЕК не касается окружности.

В любом описанном четырехугольнике суммы длин противолежащих сторон

Теорема

В любой треугольник можно вписать окружность.

Доказательство

Дано: произвольный В любом описанном четырехугольнике суммы длин противолежащих сторонАВС.

Доказать: в В любом описанном четырехугольнике суммы длин противолежащих сторонАВС можно вписать окружность.

Доказательство:

1. Проведем биссектрисы углов А, В и С, которые пересекутся в точке О (следствие из свойства биссектрис). Из точки О проведем перпендикуляры ОК, ОL и ОМ соответственно к сторонам АВ, ВС и СА (Рис. 2).

В любом описанном четырехугольнике суммы длин противолежащих сторон

2. Точка О равноудалена от сторон В любом описанном четырехугольнике суммы длин противолежащих сторонАВС (свойство биссектрис), поэтому ОК = ОL = ОМ. Следовательно, окружность с центром О радиуса ОК проходит через точки К, L и М. Стороны В любом описанном четырехугольнике суммы длин противолежащих сторонАВС касаются этой окружности в точках К, L, М, т.к. они перпендикулярны к радиусам ОК, ОL и ОМ. Значит, окружность с центром О радиуса ОК является вписанной в В любом описанном четырехугольнике суммы длин противолежащих сторонАВС. Теорема доказана.

Замечание 1

В треугольник можно вписать только одну окружность.

Доказательство

Предположим, что в треугольник можно вписать две окружности. Тогда центр каждой окружности равноудален от сторон треугольника и, значит, совпадает с точкой О пересечения биссектрис треугольника, а радиус равен расстоянию от точки О до сторон треугольника. Следовательно, эти окружности совпадают, значит в треугольник можно вписать только одну окружность. Что и требовалось доказать.

Замечание 2

Площадь треугольника равна произведению его полупериметра на радиус вписанной в него окружности.

Доказательство

На рисунке 2 мы видим, что В любом описанном четырехугольнике суммы длин противолежащих сторонАВС составлен из трех треугольников: АВО, ВСО и САО. Пусть АВ, ВС и АС основания треугольников АВО, ВСО и САО соответственно, тогда высотами данных треугольников окажутся отрезки ОК = ОL = ОМ = r ( r — радиус окружности с центром О). Следовательно, площади этих треугольников вычисляются по формулам: В любом описанном четырехугольнике суммы длин противолежащих сторон. Тогда, по свойству площадей, площадь треугольника В любом описанном четырехугольнике суммы длин противолежащих сторонАВС выражается формулой: В любом описанном четырехугольнике суммы длин противолежащих сторон, где В любом описанном четырехугольнике суммы длин противолежащих сторон— периметр В любом описанном четырехугольнике суммы длин противолежащих сторонАВС. Что и требовалось доказать.

Замечание 3

Не во всякий четырехугольник можно вписать окружность.

Доказательство

Рассмотрим, например, прямоугольник, у которого смежные стороны не равны, т.е. прямоугольник, не являющийся квадратом. В такой прямоугольник можно «поместить» окружность, касающуюся трех его сторон (Рис.3), но нельзя «поместить» окружность так, чтобы она касалась всех четырех его сторон, т.к. диаметр окружности меньше большей стороны прямоугольника т.е. нельзя вписать окружность. Что и требовалось доказать.

В любом описанном четырехугольнике суммы длин противолежащих сторон

Если же в четырехугольник можно вписать окружность, то его стороны обладают следующим замечательным свойством:

В любом описанном четырехугольнике суммы противоположных сторон равны.

Доказательство

Рассмотрим четырехугольник АВСD, описанный около окружности (Рис. 4).

В любом описанном четырехугольнике суммы длин противолежащих сторон

На рисунке 4 одинаковыми буквами обозначены равные отрезки касательных, т.к. отрезки касательных к окружности, проведенные из одной точки, равны. Тогда АВ + СD = В любом описанном четырехугольнике суммы длин противолежащих сторони ВС + АD = В любом описанном четырехугольнике суммы длин противолежащих сторон, следовательно, АВ + СD = ВС + АD.

Верно и обратное утверждение:

Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Доказательство

Пусть в выпуклом четырехугольнике АВСD

АВ + СD = ВС + АD. (1)

Точка О пересечения биссектрис углов А и В равноудалена от сторон АD, АВ и ВС (свойство биссектрис), поэтому можно провести окружность с центром О, касающуюся указанных трех сторон (Рис. 5).

В любом описанном четырехугольнике суммы длин противолежащих сторон

Докажем, что эта окружность касается также стороны СD и, значит, является вписанной в четырехугольник АВСD.

Предположим, что это не так. Тогда прямая СD либо не имеет общих точек с окружностью, либо является секущей. Рассмотрим первый случай (Рис. 6). Проведем касательную С1D1, параллельную стороне СD (С1 и D1 — точки пересечения касательной со сторонами ВС и АD).

В любом описанном четырехугольнике суммы длин противолежащих сторон

Так как АВС1D1 — описанный четырехугольник, то по свойству его противоположных сторон

АВ + С1D1 = ВС1 + AD1. (2)

Но ВС1 = ВСС1С, АD1 = АDD1D, поэтому из равенства (2) получаем:

С1D1 + С1С + D1D = ВС + АDАВ.

Правая часть этого равенства в силу (1) равна СD. Следовательно, приходим к равенству

т.е. в четырехугольник С1СDD1 одна сторона равна сумме трех других сторон. Но этого не может быть, т.к. к аждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон. Значит, наше предположение ошибочно. Аналогично можно доказать, что прямая CD не может быть секущей окружности. Следовательно, окружность касается стороны СD. Что и требовалось доказать.

Поделись с друзьями в социальных сетях:

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Вписанная окружность

Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.

Окружность, точно можно вписать в такие геометрические фигуры, как:

  • Треугольник
  • Выпуклый, правильный многоугольник
  • Квадрат
  • Равнобедренная трапеция
  • Ромб

В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.

Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.

Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.

Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.

Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.

Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.

Свойства вписанной окружности

В треугольник

  1. В любой треугольник может быть вписана окружность, причем только один раз.
  2. Центр вписанной окружности — точка пересечения биссектрис треугольника.
  3. Вписанная окружность касается всех сторон треугольника.
  4. Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:

[ S = frac(a+b+c) cdot r = pr ]

p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.

  • Центр окружности вписанной в треугольник равноудален от всех сторон.
  • Точка касания — это точка, в которой соприкасается
    окружность и любая из сторон треугольника.
  • От центра вписанной окружности можно провести
    перпендикуляры к любой точке касания.
  • Вписанная в треугольник окружность делит стороны
    треугольника на 3 пары равных отрезков.
  • Вписанная и описанная около треугольника окружность тесно взаимосвязаны.
    Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:

    с — расстояние между центрами вписанной и описанной окружностей треугольника.
    R — радиус описанной около треугольника.
    r — радиус вписанной окружности треугольника.

    В четырехугольник

    1. Не во всякий четырехугольник можно вписать окружность.
    2. Если у четырехугольника суммы длин его противолежащих
      сторон равны, то окружность, может быть, вписана (Теорема Пито).
    3. Центр вписанной окружности и середины двух
      диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
    4. Точка пересечения биссектрис — это центр вписанной окружности.
    5. Точка касания — это точка, в которой соприкасается
      окружность и любая из сторон четырехугольника.
    6. Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:

    [ S = frac(a+b+c+d)cdot r = pr ]

    p — полупериметр четырехугольника.
    r — радиус вписанной окружности четырехугольника.

  • Точка касания вписанной окружности, которая лежит на любой из сторон,
    равноудалены от этой конца и начала этой стороны, то есть от его вершин.
  • Примеры вписанной окружности

    • Треугольник
      В любом описанном четырехугольнике суммы длин противолежащих сторон
    • Четырехугольник
      В любом описанном четырехугольнике суммы длин противолежащих сторон
    • Многоугольник
      В любом описанном четырехугольнике суммы длин противолежащих сторон

    Примеры описанного четырехугольника:
    равнобедренная трапеция, ромб, квадрат.

    Примеры описанного треугольника:
    равносторонний
    , равнобедренный,
    прямоугольный треугольники.

    Верные и неверные утверждения

    1. Радиус вписанной окружности в треугольник и радиус вписанной
      в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
    2. Любой параллелограмм можно вписать в окружность. Неверное утверждение.
    3. В любой четырехугольник можно вписать окружность. Неверное утверждение.
    4. В любой ромб можно вписать окружность. Верное утверждение.
    5. Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
    6. Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
    7. Угол вписанный в окружность равен соответствующему центральному
      углу опирающемуся на ту же дугу. Неверное утверждение.
    8. Радиус вписанной окружности в прямоугольный треугольник равен
      половине разности суммы катетов и гипотенузы. Верное утверждение.
    9. Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
    10. Вписанная окружность в треугольник имеет в общем
      три общие точки со всеми сторонами треугольника. Верное утверждение.

    Окружность вписанная в угол

    Окружность вписанная в угол — это окружность, которая
    лежит внутри этого угла и касается его сторон.

    Центр окружности, которая вписана в угол,
    расположен на биссектрисе этого угла.

    К центру окружности вписанной в угол, можно провести,
    в общей сложности два перпендикуляра со смежных сторон.

    Длина диаметра, радиуса, хорды, дуги вписанной окружности
    измеряется в км, м, см, мм и других единицах измерения.

    📹 Видео

    Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

    Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

    11 класс, 44 урок, Описанный четырехугольникСкачать

    11 класс, 44 урок, Описанный четырехугольник

    #58. Олимпиадная задача о четырехугольникеСкачать

    #58. Олимпиадная задача о четырехугольнике

    Неравенство треугольника ★ Любая сторона треугольника меньше суммы двух других сторонСкачать

    Неравенство треугольника ★ Любая сторона треугольника меньше суммы двух других сторон

    Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать

    Описанная и вписанная окружности четырехугольника - 8 класс геометрия

    3 правила для вписанного четырехугольника #shortsСкачать

    3 правила для вписанного четырехугольника #shorts

    8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4Скачать

    8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4

    ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 классСкачать

    ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 класс

    16) Четырехугольник АВСD описан около окружности, AD=7, DC=12, BC=13. Найдите AB. Математика огэ.Скачать

    16) Четырехугольник АВСD описан около окружности, AD=7, DC=12, BC=13. Найдите AB. Математика огэ.

    Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис ТрушинСкачать

    Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис Трушин

    №47. В пространственном четырехугольнике ABCD стороны АВ и CD равны. Докажите, что прямые АВ и CDСкачать

    №47. В пространственном четырехугольнике ABCD стороны АВ и CD равны. Докажите, что прямые АВ и CD

    Свойство и признак вписанного четырехугольникаСкачать

    Свойство и признак вписанного четырехугольника

    Все теоремы по геометрии за 8 классСкачать

    Все теоремы по геометрии за 8 класс

    Тема 9. Вписанные и описанные четырехугольникиСкачать

    Тема 9. Вписанные и описанные четырехугольники

    ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

    ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

    №370. Найдите углы выпуклого четырехугольника, если они пропорциональны числам 1, 2, 4, 5.Скачать

    №370. Найдите углы выпуклого четырехугольника, если они пропорциональны числам 1, 2, 4, 5.

    ЕГЭ Математика Задание 6#27935Скачать

    ЕГЭ Математика Задание 6#27935

    Сумма первых n членов арифметической прогрессии. 9 класс.Скачать

    Сумма первых n членов арифметической прогрессии. 9 класс.
    Поделиться или сохранить к себе: