называют абсолютным показателем преломления. С учетом последнего имеем
Следовательно, показатель преломления есть физическая величина, равная отношению скорости электромагнитных волн в вакууме к их скорости в среде.
Векторы E, H и v образуют правовинтовую систему.
Из уравнений Максвелла следует также, что в электромагнитной волне векторы E и H всегда колеблются в одинаковых фазах, причем мгновенные значения Е и H в любой точке связаны соотношением
Следовательно, E и H одновременно достигают максимума, одновременно обращаются в нуль и т.д.
От уравнений (3.2.1) можно перейти к уравнениям
где y и z при E и H подчеркивают лишь то, что векторы E и H направлены вдоль взаимно перпендикулярных осей у и z.
Уравнениям (3.2.3) удовлетворяют, в частности, плоские монохроматические электромагнитные волны (ЭМВ одной строго определенной частоты), описываемые уравнениями
где E0 и H0 — соответственно амплитуды напряженностей электрического и магнитного полей волны; ω — круговая частота; k = . волновое число; φ — начальная фаза колебаний в точках с координатой x = 0. В уравнениях (3.2.4) начальные фазы одинаковы, т.е. колебания электрического и магнитного векторов в ЭМВ происходят в одинаковых фазах.
Из всего вышеизложенного можно сделать следующие заключения:
• векторы H, E и v взаимно перпендикулярны, т.к. K и v направлены одинаково;
• электромагнитная волна является поперечной;
• электрическая и магнитная составляющие распространяются в одном направлении;
• векторы H и E колеблются в одинаковых фазах.
- Электромагнитные волны
- теория по физике 🧲 колебания и волны
- Как появляются и распространяются электромагнитные волны
- Условия возникновения электромагнитных волн
- Плотность потока электромагнитного излучения
- Точечный источник излучения
- Зависимость плотности потока излучения от частоты
- Свойства электромагнитных волн
- Шкала электромагнитных волн
- Физика. 11 класс
- Электромагнитные волны
- Необходимо запомнить
- Решение задачи
- НАШИ ПАРТНЁРЫ
- 📸 Видео
Видео:Урок 385. Опыты Герца. Свойства электромагнитных волнСкачать
Электромагнитные волны
теория по физике 🧲 колебания и волны
Вспомним, что волна — это колебания, распространяющиеся в пространстве. Механическая волна представляет собой колебания, распространяющиеся в вещественной среде. Тогда электромагнитная волна — это электромагнитные колебания, которые распространяются в электромагнитном поле.
Видео:Физика 11 класс (Урок№10 - Электромагнитные волны.)Скачать
Как появляются и распространяются электромагнитные волны
Представьте себе неподвижный точечный заряд. Пусть его окружают еще много таких зарядов. Тогда он будет действовать на них с некоторой кулоновской силой (и они на него). А теперь представьте, что заряд сместился. Это приведет к изменению расстояния по отношению к другим зарядам, а, следовательно, и к изменению сил, действующих на них. В результате они тоже сместятся, но с некоторым запаздыванием. При этом начнут смещаться и другие заряды, которые взаимодействовали с ними. Так распространяется электромагнитные взаимодействия.
Теперь представьте, что заряд не просто сместился, а он начал быстро колебаться вдоль одной прямой. Тогда по характеру движения он будет напоминать шарик, подвешенный к пружине. Разница будет только в том, что колебания заряженных частиц происходят с очень высокой частотой.
Вокруг колеблющегося заряда начнет периодически изменяться электрическое поле. Очевидно, что период изменений этого поля, будет равен периоду колебаний заряда. Периодически меняющееся электрическое поле будет порождать периодически меняющееся магнитное поле. Это магнитное поле, в свою очередь, будет создавать переменное электрическое поле, но уже на большем расстояние от заряда, и т.д. В результате появления взаимно порождаемых полей в пространстве, окружающем заряд, возникает система взаимно перпендикулярных, периодически меняющихся электрических и магнитных полей. Так образуется электромагнитная волна, которая распространяется от колеблющегося заряда во все стороны.
Электромагнитная волна не похожа на те возмущения вещественной среды, которые вызывают механические волны. Посмотрите на рисунок. На нем изображены векторы напряженности → E и магнитной индукции → B в различных точках пространства, лежащих на оси Oz, в фиксированный момент времени. Никаких гребней и впадин среды при этом не появляется.
В каждой точке пространства электрические и магнитные пол меняются во времени периодически. Чем дальше расположена точка от заряда, тем позднее ее достигнут колебания полей. Следовательно, на разных расстояниях от заряда колебания происходят с различными фазами. Колебания векторов → E и → B в любой точке совпадают по фазе.
Длина электромагнитной волны — расстояние между двумя ближайшими точками, в которых колебания происходят в одинаковых фазах.
Длина электромагнитной волны обозначается как λ. Единица измерения — м (метр).
Обратите внимание на рисунок выше. Векторы магнитной индукции и напряженности поля, являющиеся периодически изменяющимися величинами, в любой момент времени перпендикулярны направлению распространения волны. Следовательно, электромагнитная волна — поперечная волна.
Видео:Что такое электромагнитная волна | Физика 11 класс #19 | ИнфоурокСкачать
Условия возникновения электромагнитных волн
Электромагнитные волны излучаются только колеблющимися заряженными частицами. При этом важно, чтобы скорость их движения постоянно менялась, т.е. чтобы они двигались с ускорением.
Наличие ускорения — главное условие возникновения электромагнитных волн.
Электромагнитное поле может излучаться не только колеблющимся зарядом, но и заряженной частицей, перемещающейся с постоянно меняющейся скоростью. Интенсивность электромагнитного излучения тем больше, чем больше ускорение, с которым движется заряд.
Представим заряд, движущийся с постоянной скоростью. Тогда создаваемые им электрическое и магнитное поля будут сопровождать его как шлейф. Только при ускорении заряда поля «отрываются» от частицы и начинают самостоятельное существование в форме электромагнитных волн.
Впервые существование электромагнитных волн предположил Максвелл, который посчитал, что они должны распространяться со скоростью света. Но экспериментально они были обнаружены лишь спустя 10 лет после смерти ученого. Их открыл Герц. Он же подтвердил, что скорость распространения электромагнитных волн равна скорости света: c = 300 000 км/с.
Видео:Билет №40 "Излучение электромагнитной волны"Скачать
Плотность потока электромагнитного излучения
Излученные электромагнитные волны несут с собой энергию. Рассмотрим поверхность площадью S, через которую электромагнитные волны переносят энергию.
На рисунке выше прямые линии указывают направления распространения электромагнитных волн. Это лучи — линии, перпендикулярные поверхностям, во всех точках которых колебания происходят в одинаковых фазах. Такие поверхности называются волновыми поверхностями.
Плотность потока электромагнитного излучения, или интенсивность волны — отношение электромагнитной энергии ΔW, проходящей за время Δt через перпендикулярную лучам поверхность площадью S, к произведению площади S на время Δt.
Плотность потока электромагнитного излучения обозначается как I. Единица измерения — Вт/м 2 (ватт на квадратный метр). Поэтому плотность потока электромагнитного излучения фактически представляет собой мощность электромагнитного излучения, проходящего через единицу площади поверхности.
Численно плотность потока электромагнитного излучения определяется формулой:
Выразим I через плотность электромагнитной энергии и скорость ее распространения с. Выберем поверхность площадью S, перпендикулярную лучам, и построим на ней как на основании цилиндр с образующей cΔt (см. рисунок ниже).
Объем цилиндра: ΔV = ScΔt. Энергия электромагнитного поля внутри цилиндра равна произведению плотности энергии на объем: ΔW = w cΔtS. Вся эта энергия за время Δt пройдет через правое основание цилиндра. Поэтому получаем:
I = w c Δ t S S Δ t . . = w c
Следовательно, плотность потока электромагнитного излучения равна произведению плотности электромагнитной энергии на скорость ее распространения.
Плотность электромагнитной энергии — энергия электромагнитного излучения в единице объема. Обозначается как w. Единица измерения — Дж/м 3 .
Пример №1. Плотность потока излучения равна 6 мВт/м 2 . Найти плотность энергии электромагнитной волны.
w = I c . . = 6 · 10 − 3 3 · 10 8 . . = 2 · 10 − 11 ( Д ж м 3 . . )
Точечный источник излучения
Источники излучения электромагнитных волн могут быть весьма разнообразными. Простейшим является точечный источник.
Точечный источник — источник излучения, размеры которого много меньше расстояния, на котором оценивается его действие.
Предполагается, что точечный источник посылает электромагнитные волны по всем направлениям с одинаковой интенсивностью. В действительности таких источников не существует. Но за такие источники излучения можно принять звезды, так как расстояние между ними существенно больше размеров самих звезд.
Энергия, которую переносят электромагнитные волны, с течением времени распределяется по все большей и большей поверхности. Поэтому энергия, передаваемая через поверхность единичной площадки за единицу времени, т. е. плотность потока излучения, уменьшается по мере удаления от источника.
Поместим точечный источник в центр сферы радиусом R. Площадь поверхности сферы S = 4πR 2 . Если считать, что источник по всем направлениям за время Δt излучает суммарную энергию ΔW, получим:
I = Δ W S Δ t . . = Δ W 4 π Δ t . . · 1 R 2 . .
Плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника.
Пример №2. Плотность потока электромагнитного излучения на расстоянии 5 метров от точечного источника составляет 20 мВт/м 2 . Найти плотность потока электромагнитного излучения на расстоянии 10 метров от этого источника.
Расстояние по условию задачи увеличилось вдвое. Так как плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника, при увеличении расстояния вдвое интенсивность излучения уменьшится в 4 раза. То есть, она станет равной 5 мВт/м 2 .
Зависимость плотности потока излучения от частоты
Напряженность электрического поля и магнитная индукция электромагнитной волны пропорциональны ускорению заряда. Ускорение при гармонических колебаниях пропорционально квадрату частоты. Поэтому напряженность электрического поля и магнитная индукция также пропорциональны квадрату частоты:
Плотность энергии электрического поля пропорциональна квадрату напряженности поля. Энергия магнитного поля, как это можно показать, пропорциональна квадрату магнитной индукции. Полная плотность энергии электромагнитного поля равна сумме плотностей энергий электрического и магнитного полей. Поэтому плотность потока излучения I пропорциональна:
Плотность потока излучения пропорциональна четвертой степени частоты. Так, при увеличении частоты колебаний зарядов в 2 раза энергия, излучаемая ими, возрастает в 16 раз. При увеличении частоты в 3 раза, энергия излучения увеличивается в 81 раз, и т.д.
Пример №3. Частота электромагнитной волны уменьшилась в 4 раза. Найти, во сколько раз изменилась плотность потока излучения.
Так как плотность потока излучения пропорциональна четвертой степени частоты, мы можем найти плотность потока излучения путем извлечения
Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.
4 √ 4 = √ √ 4 = √ 2 ≈ 1 , 4
Плотность потока излучения уменьшилась в 1,4 раза.
Видео:Электромагнитные волны. 11 класс.Скачать
Свойства электромагнитных волн
Современные радиотехнические устройства позволяют провести очень наглядные опыты по наблюдению свойств электромагнитных волн. При этом лучше всего пользоваться волнами сантиметрового диапазона. Эти волны излучаются специальным генератором сверхвысокой частоты (СВЧ). Электрические колебания генератора модулируют звуковой частотой. Принятый сигнал после детектирования подается на громкоговоритель.
Свойство 1 — Поглощение электромагнитных волн | |
Если расположить рупоры друг против друга и добиться хорошей слышимости звука в громкоговорители, а затем поместить между ними диэлектрик, звук будет менее громким. | |
Свойство 2 — Отражение электромагнитных волн | |
Если диэлектрик заменить металлической пластиной, то звук перестанет быть слышимым. Волны не достигают приемника вследствие отражения. Отражение происходит под углом, равным углу падения, как и в случае световых и механических волн. Чтобы убедиться в этом, рупоры располагают под одинаковыми углами к большому металлическому листу. Звук исчезнет, если убрать Лист — наружный орган растения, основными функциями которого является фотосинтез, газообмен и транспирация. » data-gt-translate-attributes='[]’>лист или повернуть его. | |
Свойство 3 — Преломление электромагнитных волн | |
Электромагнитные волны изменяют свое направление (преломляются) на границе диэлектрика. Это можно обнаружить с помощью большой треугольной призмы из парафина. Рупоры располагают под углом друг к другу, как и при демонстрации отражения. Металлический лист заменяют затем призмой. Убирая призму или поворачивая ее, наблюдают исчезновение звука. | |
Свойство 4 — Поперечность электромагнитных волн | |
Поместим между генератором и приемником решетку из параллельных металлических стержней. Решетку расположим так, чтобы стержни были горизонтальными или вертикальными. При одном из этих положений, когда электрический вектор параллелен стержням, в них возбуждаются токи, в результате чего решетка начинает отражать волны, подобно сплошной металлической пластине. Когда же вектор перпендикулярен стержням, токи в них не возбуждаются и электромагнитная волна проходит через решетку. |
Видео:Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.Скачать
Шкала электромагнитных волн
Электромагнитные волны имеют большое разнообразие. Они классифицируются по длине волны λ или связанной с ней частоте ν. Шкала электромагнитных волн включает в себя:
- радиоволны;
- оптическое излучение;
- ионизирующее излучение.
Укажем частоты и длины указанных волн, а также их подробную классификацию в таблице.
Наименование диапазона волн | Длины волн (м) | Частоты (Гц) |
Радиоволны | ||
Инфразвук, звук | >10 5 | 3 |
Сверхдлинные волны (СДВ) | 10 4 –10 5 | 3∙10 3 –3∙10 4 |
Длинные волны (ДВ) | 10 3 –10 4 | 3∙10 4 –3∙10 5 |
Средние волны (СВ) | 10 2 –10 3 | 3∙10 5 –3∙10 6 |
Короткие волны (КВ) | 10–100 | 3∙10 6 –3∙10 7 |
Ультракороткие (УКВ):
|
|
|
Оптические волны | ||
Инфракрасное излучение | 0,78∙10 –6 –10 –4 | 3∙10 11 –4∙10 14 |
Видимый свет | 0,38∙10 –6 –0,78∙10 –6 | 4∙10 14 –7,5∙10 14 |
Ультрафиолетовое излучение | 10 –7 –0,38∙10 –6 | 7,5∙10 11 –3∙10 15 |
Ионизирующее излучение | ||
Рентгеновское излучение | 5∙10 –12 –10 –8 | 3∙10 16 –6∙10 19 |
Гамма-излучение | –12 | >6∙10 19 |
Частоты и длины волн электромагнитного излучения видимого спектра смотрите на рисунке ниже.
В электромагнитной волне, распространяющейся со скоростью → v , происходят колебания векторов напряжённости электрического поля → E и индукции магнитного поля → B . При этих колебаниях векторы → v , → E , → B . имеют взаимную ориентацию:
Видео:Семинар: Г.И. Шипов, Скалярные электромагнитные волны и их связь с торсионными полямиСкачать
Физика. 11 класс
Свойства электромагнитных волн
Видео:Электромагнитные волныСкачать
Электромагнитные волны
Видео:Электромагнитные волны. Шкала электромагнитных волн. 9 класс.Скачать
Необходимо запомнить
В 1820 году Эрстед обнаружил действие электрического тока на магнитную стрелку, что привело к возникновению новой области физики – электромагнетизма. В 1831 году Фарадей открыл явление электромагнитной индукции: переменное магнитное поле создаёт переменный электрический ток. В 1864 г. Максвелл предположил, что при изменении электрического поля, возникает вихревое магнитное поле. В 1887 г. Герц экспериментально подтвердил гипотезу Максвелла о существовании электромагнитного поля. Он использовал устройство, которое было названо в его честь вибратором Герца.
Значение скорости электромагнитной волны, полученной в эксперименте Герца, совпало со значением скорости электромагнитной волны по гипотезе Максвелла с = 299 792 458 м/с $sim$ 300 000 км/с. Согласно теории Максвелла электромагнитная волна переносит энергию. Энергия электромагнитного поля волны в данный момент времени меняется периодически в пространстве с изменением векторов $overrightarrow$ и $overrightarrow$.
Свойства электромагнитных волн:
1. Электромагнитная волна представляет собой распространение в пространстве с течением времени переменных (вихревых) электрических и магнитных полей.
2. Электромагнитные волны излучаются зарядами, которые движутся с ускорением, от величины которого зависит интенсивность образующейся электромагнитной волны.
3. Векторы $overrightarrow$ и $overrightarrow$ в электромагнитной волне перпендикулярны друг другу и перпендикулярны направлению распространения волны. Электромагнитная волна является поперечной
4. Колебания векторов $overrightarrow$ и $overrightarrow$ происходят в одной фазе.
5. Электромагнитная волна в вакууме распространяется со скоростью равной скорости света.
Виды электромагнитных волн: радиоволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские лучи, гамма-излучение.
Видео:Чирцов А.С. "Бессильные линии". Уравнения Максвелла. Электромагнитные волны. Оператор. Производная.Скачать
Решение задачи
Термолокаторы у животных
В процессе эволюции у многих животных и даже у растений появились «приборы», улавливающие лучи от 300 до 900 нм, среди них – глаза. Электромагнитные волны в этой области спектра стали называть светом. Правда, с 300 нм видит только пчела, это ультрафиолетовый свет. Сколько бы мы ни рассматривали мельчайшие организмы, как бы тщательно ни изучали более крупных животных и человека, специальных рецепторов, воспринимающих радиочастотные электромагнитные волны, нам не найти. Мы не ощущаем их, хотя они и влияют на общее состояние человека. Видимо, сами живые клетки становятся приемниками волн различной длины. Чем меньше длина волны, тем отчетливее реагирует на них организм. У людей, в отличие от некоторых животных, которых природа наделила прекрасными термолокаторами, нет живых «приборов» ночного видения, способных воспринимать инфракрасные лучи, идущие от всего живого, даже от растений. А вот кровососущим, к примеру, в любое время дня и ночи нужно искать и находить добычу. Для них большое значение играют не видимые лучи, а инфракрасные, позволяющие дистанционно находить тела своих будущих жертв. Самый обычный постельный клоп обнаруживает объекты, имеющие температуру тела, на расстоянии нескольких метров. Другой кровосос – клещ – вооружен более совершенным термолокатором. Забравшись на кончик листа дерева или куста, он поднимает передние ножки и начинает ими водить в разные стороны. На ножках можно различить округлые образования – это и есть термолокаторы. Они воспринимают лучи за несколько метров от источника. Достаточно человеку высунуть голову из автомобиля, как клещ на расстоянии нескольких метров обнаруживает его и начинает двигаться в его сторону. В глубинах океана есть тоже много животных, пользующихся «приборами» ночного видения. Последние отблески света в воде гаснут на глубине 200 м, а жизнь продолжается на 10-километровой глубине. Одни существа зажигают в кромешной тьме свои биолюминесцентные «фонарики», другие предпочитают, оставаясь невидимыми, улавливать инфракрасный свет, идущий от всех живых существ. Глубоководные кальмары, кроме своих обычных глаз имеют ещё термоскопические глаза, улавливающие инфракрасные лучи. Каждый термоскопический глаз снабжён специальным светофильтром, задерживающим все лучи, кроме инфракрасных. Самое интересное то, что термоскопические глаза расположены у кальмара на хвосте. Вращая им, как головой, кальмар высматривает животных, которыми можно полакомиться. В Америке водятся чрезвычайно ядовитые гремучие змеи, а в Средней Азии щитомордники. У них на голове четыре ноздри. С каждой стороны одна нормальная, а вторая большая. Это большое углубление между глазом и ноздрей – термолокатор – своеобразный глаз – инфракрасная камера-обскура. Даже если её глаза закрыты, ямкоголовая змея, нанося удары по добыче, ошибается не более чем на 5 градусов. Казалось бы, термолокаторы, построенные человеком, более чувствительны, чем созданные природой. Но живой «прибор» на единицу термолоцирующей площади в несколько тысяч раз чувствительней.
Видео:4.8 Плотность потока мощности электромагнитной волныСкачать
НАШИ ПАРТНЁРЫ
© Государственная образовательная платформа «Российская электронная школа»
📸 Видео
Лекция №13. Электромагнитные волныСкачать
Урок 384. Излучение электромагнитных волн.Скачать
Свойства электромагнитных волн. 11 класс.Скачать
Билет №38 "Поток энергии"Скачать
Электромагнитные волны НАГЛЯДНО. ТВ урок.Скачать
ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ. ЧТО ЭТО? [Радиолюбитель TV 6]Скачать
Электромагнитные волны. Поток энергии. Вектор Умова-Пойтинга.Скачать
Урок 390. Задачи на электромагнитные волны - 2Скачать