Формулировка задачи: В бак, имеющий форму правильной четырёхугольной призмы со стороной основания, равной K см, налита жидкость. Для того чтобы измерить объём детали сложной формы, её полностью погружают в эту жидкость. Найдите объём детали, если уровень жидкости в баке поднялся на N см. Ответ дайте в кубических сантиметрах.
Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 13 (Задачи по стереометрии).
Рассмотрим, как решаются подобные задачи на примере и выведем общий способ решения.
В бак, имеющий форму правильной четырёхугольной призмы со стороной основания, равной 20 см, налита жидкость. Для того чтобы измерить объём детали сложной формы, её полностью погружают в эту жидкость. Найдите объём детали, если уровень жидкости в баке поднялся на 20 см. Ответ дайте в кубических сантиметрах.
В основании правильной четырехугольной призмы лежит квадрат со стороной 20 см. Поэтому его площадь будет равна:
20 ⋅ 20 = 400 см 2
При погружении детали в жидкость ее уровень поднялся на 20 см. Получается, что объем жидкости изменился на:
400 ⋅ 20 = 8000 см 3
Объем детали равен объему жидкости, который она вытеснила. Таким образом, объем детали равен 8000 куб. см.
В общем виде решение данной задачи по стереометрии выглядит следующим образом:
ОБЪЕМ ДЕТАЛИ В КУБ. СМ = K 2 ⋅ N
где N – высота, на которую поднялся уровень уровень жидкости в баке, K – сторона основания правильной четырехугольной призмы.
Остается лишь подставить значения и вычислить результат.
Поделитесь статьей с одноклассниками «В бак имеющий форму правильной четырёхугольной призмы со стороной основания – как решать».
- В бак имеющий форму правильный четырехугольник
- Задание №13 ЕГЭ по математике базового уровня
- Наглядная стереометрия
- Разбор типовых вариантов заданий №13 ЕГЭ по математике базового уровня
- Вариант 13МБ1
- Вариант 13МБ2
- Вариант 13МБ3
- Вариант 13МБ4
- Вариант 13МБ5
- Вариант 13МБ6
- Вариант 13МБ7
- Вариант 13МБ8
- Вариант 13МБ9
- Вариант 13МБ10
- Вариант 13МБ11
- Вариант 13МБ12
- Вариант 13МБ13
- Вариант 13МБ14
- 📽️ Видео
Видео:🔴 В бак, имеющий форму правильной четырёхугольной ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
В бак имеющий форму правильный четырехугольник
В бак, имеющий форму правильной четырёхугольной призмы со стороной основания, равной 40 см, налита жидкость. Чтобы измерить объём детали сложной формы, её полностью погружают в эту жидкость. Найдите объём детали, если после её погружения уровень жидкости в баке поднялся на 2 см. Ответ дайте в кубических сантиметрах.
Объем вытесненной жидкости равен объему детали (закон Архимеда). Уровень жидкости поднялся на h = 2 см, сторона основания a = 40 см, значит, вытесненный объем будет равен Найденный объём является объёмом детали.
В бак, имеющий форму правильной четырёхугольной призмы со стороной основания, равной 80 см, налита жидкость. Чтобы измерить объём детали сложной формы, её полностью погружают в эту жидкость. Найдите объём детали, если после её погружения уровень жидкости в баке поднялся на 5 см. Ответ дайте в кубических сантиметрах.
Объем вытесненной жидкости равен объему детали (закон Архимеда). Уровень жидкости поднялся на h=5 см, сторона основания a = 80 см, значит, вытесненный объем будет равен Найденный объём является объёмом детали.
В бак, имеющий форму правильной четырёхугольной призмы со стороной основания, равной 20 см, налита жидкость. Чтобы измерить объём детали сложной формы, её полностью погружают в эту жидкость. Найдите объём детали, если после её погружения уровень жидкости в баке поднялся на 20 см. Ответ дайте в кубических сантиметрах.
Объем вытесненной жидкости равен объему детали (закон Архимеда). Уровень жидкости поднялся на h=20 см, сторона основания a = 20 см, значит, вытесненный объем будет равен Найденный объём является объёмом детали.
В бак, имеющий форму правильной четырёхугольной призмы со стороной основания, равной 40 см, налита жидкость. Чтобы измерить объём детали сложной формы, её полностью погружают в эту жидкость. Найдите объём детали, если после её погружения уровень жидкости в баке поднялся на 15 см. Ответ дайте в кубических сантиметрах.
Объем вытесненной жидкости равен объему детали (закон Архимеда). Уровень жидкости поднялся на h=15 см, сторона основания a = 40 см, значит, вытесненный объем будет равен Найденный объём является объёмом детали.
В бак, имеющий форму правильной четырёхугольной призмы со стороной основания, равной 60 см, налита жидкость. Чтобы измерить объём детали сложной формы, её полностью погружают в эту жидкость. Найдите объём детали, если после её погружения уровень жидкости в баке поднялся на 5 см. Ответ дайте в кубических сантиметрах.
Объем вытесненной жидкости равен объему детали (закон Архимеда). Уровень жидкости поднялся на h=5 см, сторона основания a = 60 см, значит, вытесненный объем будет равен Найденный объём является объёмом детали.
В бак, имеющий форму правильной четырёхугольной призмы со стороной основания, равной 90 см, налита жидкость. Чтобы измерить объём детали сложной формы, её полностью погружают в эту жидкость. Найдите объём детали, если после её погружения уровень жидкости в баке поднялся на 10 см. Ответ дайте в кубических сантиметрах.
Объем вытесненной жидкости равен объему детали (закон Архимеда). Уровень жидкости поднялся на h = 10 см, сторона основания a = 90 см, значит, вытесненный объем будет равен Найденный объём является объёмом детали.
Видео:🔴 В бак, имеющий форму прямой призмы, налито ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Задание №13 ЕГЭ по математике базового уровня
Видео:🔴 В бак, имеющий форму цилиндра, налито ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Наглядная стереометрия
В 13 задании ЕГЭ базового уровня мы будем иметь дело с задачами по стереометрии, но не абстрактными, а наглядными примерами. Это могут быть задачи на уровень жидкости в сосудах, которую я разобрал ниже, или же задачи на модификации фигуры — например, у которой отрезали вершины. Нужно быть готовым к решению простых задач по стереометрии — они обычно сводятся сразу к задачам на плоскости, необходимо только правильно посмотреть на чертеж.
Разбор типовых вариантов заданий №13 ЕГЭ по математике базового уровня
Вариант 13МБ1
Вода в сосуде цилиндрической формы находится на уровне h = 80 см. На каком уровне окажется вода, если ее перелить в другой цилиндрический сосуд, у которого радиус основания в 4 раза больше, чем у данного? Ответ дайте в сантиметрах.
Алгоритм выполнения:
- Записать формулу объема цилиндра.
- Подставить значения для цилиндра с жидкостью в первом и во втором случае.
- Объем жидкости не изменялся, следовательно, можно приравнять объемы.
- Полученное уравнение решить относительно второй высоты h2.
- Подставить данные и вычислить искомую величину.
Решение:
Если вы забыли формулу объема цилиндра, то напомню, как ее можно легко вывести. Объем простых фигур, таких как куб и цилиндр, можно вычислить умножив площадь основания на высоту. Площадь основания в случае с цилиндром равна площади окружности, которую, вы, наверняка помните: π • r 2 .
Следовательно, объем цилиндра равен π • r 2 • h
Левые части равны, значит можно приравнять и правые.
Полученное уравнение решим относительно второй высоты h2.
h2 – неизвестный множитель. Чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.
По условию площадь основания стала в 4 раза больше, то есть r2 = 4 r1 . Подставим r2 = 4 r1 в выражение для h1. Получим: h2 =( π r1 2 h1)/ π (4 r1) 2 Полученную дробь
Сократимость — способность мышечных волокон укорачиваться или изменять степень напряжения при возбуждении.
Вариант 13МБ2
Даны две коробки, имеющие форму правильной четырёхугольной призмы. Первая коробка в четыре с половиной раза выше второй, а вторая втрое шире первой. Во сколько раз объём первой коробки меньше объёма второй?
Алгоритм выполнения:
- Записать формулу, для вычисления объема правильной четырехугольной призмы.
- Записать в общем виде формулу для нахождения объема в первом и втором случае.
- Найти отношение объемов.
- Преобразовать полученное выражение с учетом соотношения измерений первой и второй призмы.
- Сократить получившуюся дробь.
Решение:
Запишем в общем виде формулу для нахождения объема в первом и втором случае.
Найдем отношение объемов.
Преобразуем полученное выражение с учетом соотношения измерений первой и второй призмы. По условию c1 = 4,5 c2 (первая коробка в четыре с половиной раза выше второй), b2 = 3 b1 (вторая коробка втрое шире первой). Так как это правильные четырехугольные призмы, то в основании лежит квадрат, а значит глубина второй коробки тоже втрое больше глубины первой, то есть a2 = 3 a1 Подставим эти выражения в формулу отношения объемов:
Сократимость — способность мышечных волокон укорачиваться или изменять степень напряжения при возбуждении.
Объем первой коробочки в 2 раза меньше объема второй. Ответ: 2.
Вариант 13МБ3
Даны две коробки, имеющие форму правильной четырёхугольной призмы. Первая коробка в полтора раза выше второй, а вторая втрое шире первой. Во сколько раз объём первой коробки меньше объёма второй?
Алгоритм выполнения:
- Записать формулу, для вычисления объема правильной четырехугольной призмы.
- Записать в общем виде формулу для нахождения объема в первом и втором случае.
- Найти отношение объемов.
- Преобразовать полученное выражение с учетом соотношения измерений первой и второй призмы.
- Сократить получившуюся дробь.
Решение:
Запишем в общем виде формулу для нахождения объема в первом и втором случае.
Найдем отношение объемов.
Преобразуем полученное выражение с учетом соотношения измерений первой и второй призмы.
По условию c1 = 1,5 c2 (первая коробка в полтора раза выше второй), b2 = 3 b1 (вторая коробка втрое шире первой).
Так как это правильные четырехугольные призмы, то в основании лежит квадрат, а значит глубина второй коробки тоже втрое больше глубины первой, то есть a2 = 3 a1
Подставим эти выражения в формулу отношения объемов:
Сократим получившуюся дробь на a1 · b1 · c2. Получим:
Объем первой коробочки в 6 раза меньше объема второй. Ответ: 6.
Вариант 13МБ4
От деревянного кубика отпилили все его вершины (см. рис.). Сколько граней у получившегося многогранника (невидимые ребра на рисунке не изображены)?
Сначала вспомним сколько всего граней и вершин у куба: шесть граней и восемь вершин. Теперь на месте каждой вершины образуется новая грань после отпила, значит у модифицированного в задании куба шесть родных граней и восемь новых (после отпила). Итого получаем: 6 + 8 = 14 граней.
Если бы нас спросили, а сколько вершин у нового «куба». Очевидно, если вместо одной становится три, а их всего восемь, то получаем: 8 • 3 = 24
Вариант 13МБ5
Алгоритм выполнения
- Записываем ф-
Луб — это сложная проводящая ткань, по которой продукты фотосинтеза (органические вещества) транспортируются из листьев ко всем органам растения (к корневищам, плодам, семенам и т. д.).
Решение:
.
Подставляем в полученное отношение числовые данные:
.
Вывод: объем 2-го цилиндра больше объема 1-го в 6 раз.
Вариант 13МБ6
Алгоритм выполнения
- Вводим обозначения для объема до погружения детали и после. Пусть это будет соответственно V1 и V2.
- Фиксируем значение для V1. Выражаем V2 через V1. Находим значение V2.
- Переводим результат, полученный в литрах, в куб.см.
Решение:
2 л=2·1000=2000 (куб.см).
Вариант 13МБ7
Алгоритм выполнения
- Записываем ф-лу для расчета объема цилиндра.
- На основании этой формулы записываем 2 уравнения – для вычисления объема воды в 1-м и 2-м сосудах. Для этого используем в формуле соответствующие индексы 1 и 2.
- Поскольку воду просто переливают их одного сосуда в другой, то ее объем не изменяется. Поэтому приравниваем полученные уравнения. Из полученного единственного уравнения находим уровень воды во 2-м сосуде, выраженный высотой h2.
Решение:
.
.
Вариант 13МБ8
От деревянной правильной треугольной призмы отпилили все ее вершины (см. рис.). Сколько вершин у получившегося многогранника (невидимые ребра на рисунке не изображены)?
Алгоритм выполнения
- Определяем количество вершин у треугольной призмы.
- Анализируем изменения, которые произойдут при отпиливании всех вершин. Подсчитываем кол-во вершин у нового многогранника.
Решение:
Вершины призмы формируют вершины оснований (верхнего и нижнего). Поскольку основаниями правильной треугольной призмы являются правильные треугольники, то вершин у такой призмы 3·2=6 штук.
Спилив вершины призмы, получим вместо них небольшие (по сравнению с размерами самой призмы) треугольники. Это отображено и на рисунке. То есть вместо каждой вершины образуется 3 новых. Следовательно, их кол-во станет равным: 6·3=18.
Вариант 13МБ9
Даны две коробки, имеющие форму правильной четырехугольной призмы, стоящей на основании. Первая коробка в четыре с половиной раза ниже второй, а вторая второе уже первой. Во сколько раз объем первой коробки больше объема второй?
Алгоритм выполнения
- Вводим обозначения для линейных параметров коробок и их объемов.
- Определяем зависимость линейных параметров согласно условию.
- Записываем формулу для вычисления объема призмы.
- Адаптируем эту формулу для объемов коробок.
- Находим отношение объемов.
Решение:
Т.к. форма коробок – правильная призма, то в их основании лежат квадраты. Поэтому можем обозначить длину и ширину каждой коробки одинаково. Пусть для первой коробки это а1, а для второй а2. Высоты коробок обозначим соответственно h1 и h2. Объемы – V1 и V2.
Согласно условию, h2=4,5h1, а1=3а2. Объем призмы равен: V=Sоснh. Т.к. в основании коробок лежит квадрат, то Sосн=а 2 . Отсюда: V=a 2 h. Для 1-й коробки имеем: V1=a1 2 h1. Для 2-й коробки: V2=a2 2 h2. Тогда получаем отношение: Ответ: 2
Вариант 13МБ10
В сосуде, имеющем форму конуса, уровень жидкости достигает ½ высоты. Объем сосуда 1600 мл. Чему равен объем налитой жидкости? Ответ дайте в миллилитрах.
Алгоритм выполнения
- Доказываем, что данные в условии конусы подобны.
- Определяем коэффициент подобия.
- Используя свойство для объемов подобных тел, находим объем жидкости.
Решение:
Если рассматривать сечение конуса по двум его противоположно расположенным образующим (осевое сечение), то видим, что полученные таким способом треугольники большого конуса и малого (образованного жидкостью) подобны. Это следует из равенства их углов. Т.е. имеем: у конусов подобны высоты и радиусы основания. Отсюда делаем вывод: т.к. линейные параметры конусов подобны, то и конусы подобны.
По условию высота малого конуса (жидкости) составляет ½ высоты конуса. Значит, коэффициент подобия малого и большого конусов равен ½.
Применяем св-во подобия тел, которое заключается в том, их объемы относятся как коэффициет подобия в кубе. Обозначим объем большого конуса V1, малого – V2. Получим:
.
Поскольку по условию V1=1600 мл, то V2=1600/8=200 мл.
Вариант 13МБ11
Даны два шара с радиусами 4 и 1. Во сколько раз объем большего шара больше объема меньшего?
Алгоритм выполнения
- Записываем формулу для вычисления объема шара.
- Адаптируем формулу для каждого из шаров. Для этого используем индексы 1 и 2.
- Записываем отношение объемов, вычисляем его, подставив числовые данные из условия.
Решение:
Подставляем в полученную формулу числовые данные из условия:
Вывод: объем большего шара в 64 раза больше.
Вариант 13МБ12
Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 4 и 18, а второго – 2 и 3. Во сколько раз площадь боковой поверхности первого цилиндра больше площади боковой поверхности второго?
Алгоритм выполнения
- Записываем формулу для определения площади бок.поверхности цилиндра.
- Переписываем ее дважды с использованием соответствующих индексов – для 1-го (большего) и 2-го (меньшего) цилиндров.
- Находим отношение площадей. Вычисляем отношения, используя числовые данные из условия.
Решение:
Найдем числовое значение полученного отношения:
Вывод: площадь боковой поверхности 1-го цилиндра больше в 12 раз.
Вариант 13МБ13
Однородный шар диаметром 3 см весит 162 грамма. Сколько граммов весит шар диаметром 2 см, изготовленный из того же материала?
Алгоритм выполнения
- Записываем формулу для определения массы большего шаров через плотность и объем.
- Объем в этой формуле расписываем через ф-лу объема шара (через его радиус).
- Записываем ф-лу для массы меньшего шара, расписываем объем через радиус (по аналогии с пп.1 и 2).
- Поскольку оба шара изготовлены из одного и того же материала, то найденное значение для плотности можем использовать в ф-ле для массы меньшего шара. Вычисляем искомую массу.
Решение:
Вычисляем m2:
Вариант 13МБ14
В бак, имеющий форму правильной четырехугольной призмы со стороной основания, равной 40 см, налита жидкость. Чтобы измерить объем детали сложной формы, ее полностью погружают в эту жидкость. Найдите объем детали, если после ее погружения уровень жидкости в баке поднялся на 10 см. Ответ дайте в кубических сантиметрах.
Алгоритм выполнения
- Определяем часть призмы, соответствующую объему погруженной детали.
- Вычисляем объем детали на основании формулы для определения объема прямой призмы с квадратом в основании.
Решение:
Погруженная в жидкость деталь занимает объем, соответствующий столбу жидкости, высота которого равна 10 см, т.е. разнице, возникшей между начальной высотой жидкости и конечной (после погружения). Это означает, что деталь имеет объем, равный части жидкости, занимающей объем 40х40х10 (см).
📽️ Видео
🔴 В бак цилиндрической формы, площадь основания ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
8 класс, 3 урок, ЧетырехугольникСкачать
Все задания 13 ЕГЭ БАЗА из банка ФИПИ (математика Школа Пифагора)Скачать
ЕГЭ математика БАЗОВЫЙ уровень #1 задача 13🔴Скачать
Четырехугольники №1 в ЕГЭ | Профильная математика ЕГЭ 2024 | УмскулСкачать
10 задач по стереометрии, которые обязательно будут на ЕГЭ 2023 / ЕГЭ 2023 базовый уровеньСкачать
ЕГЭ База Задание 15 (Профиль Задание 6)Скачать
Могу ли я подготовиться к профилю за ОСТАВШЕЕСЯ ВРЕМЯ | Аня МатеманяСкачать
Лайфхаки ЕГЭ - найдите объем деталиСкачать
16 задание ОГЭ. 11299052. Треугольники, четырёхугольники, многоугольники и их элементыСкачать
Задания 11, 13 (часть 2) | ЕГЭ 2024 Математика (база) | ПризмаСкачать
Доказать неравенство ➜ a⁴+b⁴+c⁴+d⁴≥4abcd ➜ Задача от ВМК МГУСкачать
Четырехугольники. Вебинар | МатематикаСкачать
Призма.Все виды задач на ЕГЭ.52 задачи.№8 ПрофильСкачать
🔴 Найдите объём правильной четырёхугольной ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать
Задание 5. ЕГЭ профиль. ПРИЗМА.Скачать
КАК НАЙТИ ПЛОЩАДЬ БОКОВОЙ ПОВЕРХНОСТИ ПИРАМИДЫ?Скачать