Вписанные четырехугольники и их свойства |
Теорема Птолемея |
Видео:Вписанные четырехугольники. 9 класс.Скачать
Вписанные четырёхугольники и их свойства
Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .
Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .
Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .
Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.
Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.
Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).
Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.
Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.
Теорема 2 доказана.
Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.
Фигура | Рисунок | Свойство | ||||||||||||||||||||||||||||||||||
Окружность, описанная около параллелограмма | Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |||||||||||||||||||||||||||||||||||
Окружность, описанная около ромба | Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |||||||||||||||||||||||||||||||||||
Окружность, описанная около трапеции | Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |||||||||||||||||||||||||||||||||||
Окружность, описанная около дельтоида | Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |||||||||||||||||||||||||||||||||||
Произвольный вписанный четырёхугольник |
Окружность, описанная около параллелограмма | ||||||
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | ||||||
Окружность, описанная около ромба | ||||||
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | ||||||
Окружность, описанная около трапеции | ||||||
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | ||||||
Окружность, описанная около дельтоида | ||||||
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | ||||||
Произвольный вписанный четырёхугольник | ||||||
Окружность, описанная около параллелограмма |
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Видео:3 правила для вписанного четырехугольника #shortsСкачать
Теорема Птолемея
Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.
Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).
Докажем, что справедливо равенство:
Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).
Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
откуда вытекает равенство:
(1) |
Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать
Четырехугольник, вписанный в окружность
Определение 1. Четырехугольник называют вписанным в окружность, если все вершины четырехугольника лежат на окружности.
На рисунке 1 четырехугольник ABCD вписан в окружность. В этом случае говорят также, что окружность описан около четырехугольника.
Теорема 1. Если четырехугольник вписан в окружность, то сумма противолежащих углов четырехугольника равна 180°.
Доказательство. Пусть четырехугольник ABCD вписан в окружность (Рис.1). Докажем, что .
Углы A и C являются вписанными. Следовательно:
, |
Но Следовательно
Аналогично можно показать, что .
Заметим, что из следует , поскольку сумма углов четырехугольника равна 360°.
Как известно, вокруг любого треугольника можно описать окружность (см. статью Окружность, описанная около треугольника). Однако вокруг не каждого четырехугольника можно описать окружность. Например, если параллелограмм не является прямоугольником, то вокруг него не возможно описать окружность. Следующая теорема позволяет распознать четрехугольники, вокруг которых можно описать окружность.
Теорема 2. Если в четырехугольнике сумма противолежащих углов равна 180°, то около него можно описать окружность.
Доказательство. Пусть задан четырехугольник ABCD и пусть . Докажем, что около него можно описать окружность.
Предположим, что около этого четырехугольника невозможно описать окружность. Рассмотрим треугольник ABD и опишем окружность около этого треугольника (как отметили выше около любого треугольника можно описать окружность). Поскольку мы предположили, что у этого четырехугольника невозможно описать окружность, то точка C не принадлежит этой окружности. Поэтому эта точка лежит вне окружности или находится внутри окружности.
Случай 1. Точка C лежит вне описанной окружности (Рис.2).
Тогда сторона BC пересекает этот окружность. Обозначим эту точку C1. Четырехугольник ABC1D вписан в окружность. Тогда по теореме 1 имеем: . Но по условию теоремы . Следовательно . С другой стороны, угол BC1D является внешним углом треугольника DC1C, т.е. выполняется равенство . Получили противоречие, следовательно точка C не может лежать вне окружности.
Случай 2. Точка C лежит внутри описанной окружности (Рис.3).
Проведем прямую BC и точку пересечения прямой и окружности обозначим C1. Получили четырехугольник ABC1D вписанный в окружность. Тогда по теореме 1 имеем: . Но по условию данной теоремы. Следовательно, .
С другой стороны, угол C (т.е. угол BCD) является внешним углом треугольника DC1C, т.е. выполняется равенство . Получили противоречие, следовательно точка C не может лежать внутри окружности.
Следовательно точка C лежит на окружности.
Теорема 2 можно рассматривать метод определения принадлежности четырех точек одной окружности. Если четырехугольник вписан в окружность, то существует точка, равноудаленная от всех вершин четырехугольника (это центр окружности). Чтобы найти эту точку достаточно построить серединные перпендикуляры двух соседних сторон четырехугольника и найти точку их пересечения.
Видео:Свойство и признак вписанного четырехугольникаСкачать
Вписанные и описанные четырехугольники
Вписанный четырехугольник — четырехугольник, все вершины которого лежат на одной окружности.
Очевидно, эта окружность будет называться описанной вокруг четырехугольника.
Описанный четырехугольник — такой, что все его стороны касаются одной окружности. В этом случае окружность вписана в четырехугольник.
На рисунке — вписанные и описанные четырехугольники и их свойства.
Ты нашел то, что искал? Поделись с друзьями!
Посмотрим, как эти свойства применяются в решении задач ЕГЭ.
. Два угла вписанного в окружность четырехугольника равны и . Найдите больший из оставшихся углов. Ответ дайте в градусах.
Сумма противоположных углов вписанного четырехугольника равна . Пусть угол равен . Тогда напротив него лежит угол в градусов. Если угол равен , то угол равен .
. Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как . Найдите большую сторону этого четырехугольника, если известно, что его периметр равен .
Пусть сторона равна , равна , а . По свойству описанного четырехугольника, суммы противоположных сторон равны, и значит,
Получается, что равна . Тогда периметр четырехугольника равен . Мы получаем, что , а большая сторона равна .
. Около окружности описана трапеция, периметр которой равен . Найдите ее среднюю линию.
Мы помним, что средняя линия трапеции равна полусумме оснований. Пусть основания трапеции равны и , а боковые стороны — и . По свойству описанного четырехугольника,
, и значит, периметр равен .
Получаем, что , а средняя линия равна .
Еще раз повторим свойства вписанного и описанного четырехугольника.
Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны .
Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин его противоположных сторон равны.
Докажите эти утверждения. Это задание особенно полезно тем, кто решает задачи второй части профильного ЕГЭ по математике.
📽️ Видео
Четырехугольники, вписанные в окружность. 9 класс.Скачать
Вписанный в окружность четырёхугольник.Скачать
Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать
11 класс, 43 урок, Вписанный четырехугольникСкачать
8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4Скачать
11 класс, 44 урок, Описанный четырехугольникСкачать
Тема 9. Вписанные и описанные четырехугольникиСкачать
Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис ТрушинСкачать
Вписанная и описанная окружность - от bezbotvyСкачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 классСкачать
Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Описанные четырехугольники. 9 класс.Скачать
Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольникиСкачать
Стереометрия 10 класс. Часть 1 | МатематикаСкачать