Учитель геометрии планирует изучение темы треугольники четырехугольники и параллельные прямые впр

ВПР 8 класс. Математика. Задания 14. Анализ геометрических высказываний

Учитель геометрии планирует изучение темы треугольники четырехугольники и параллельные прямые впр

ВПР 8 класс. Математика. Прототипы №14 с ответами. Анализ геометрических высказываний.

Источник : образовательный портал Решу ВПР

Просмотр содержимого документа
«ВПР 8 класс. Математика. Задания 14. Анализ геометрических высказываний»

Задания 14. Анализ геометрических высказываний

Укажите номер верного рассуждения.

1) Если угол равен 45°, то вертикальный с ним угол равен 45°.

2) Любые две прямые имеют ровно одну общую точку.

3) Через любые три точки проходит ровно одна прямая.

4) Если расстояние от точки до прямой меньше 1, то и длина любой наклонной, проведенной из данной точки к прямой, меньше 1.

2. Укажите номер верного утверждения.

1) Если при пересечении двух прямых третьей прямой соответственные углы равны 65°, то эти две прямые параллельны.

2) Любые две прямые имеют не менее одной общей точки.

3) Через любую точку проходит не более одной прямой.

4) Любые три прямые имеют не менее одной общей точки.

3. Укажите номер верного утверждения.

1) Каж­дая сто­ро­на тре­уголь­ни­ка мень­ше раз­но­сти двух дру­гих сторон.

2) В рав­но­бед­рен­ном тре­уголь­ни­ке име­ет­ся не более двух рав­ных углов.

3) Если сто­ро­на и угол од­но­го тре­уголь­ни­ка со­от­вет­ствен­но равны сто­ро­не и углу дру­го­го треугольника, то такие тре­уголь­ни­ки равны.

4) В тре­уголь­ни­ке ABC, для ко­то­ро­го AB = 3, BC = 4, AC = 5, угол C наименьший.

4. Укажите номер верного утверждения.

1) В тре­уголь­ни­ке про­тив мень­ше­го угла лежит боль­шая сторона.

2) Если один угол тре­уголь­ни­ка боль­ше 120°, то два дру­гих его угла мень­ше 30°.

3) Если все сто­ро­ны тре­уголь­ни­ка мень­ше 1, то и хотя бы одна его вы­со­та боль­ше 1.

4) Сумма ост­рых углов пря­мо­уголь­но­го тре­уголь­ни­ка не пре­вос­хо­дит 90°.

5. Укажите номер верного утверждения.

1) Если рас­сто­я­ние между цен­тра­ми двух окруж­но­стей равно сумме их диаметров, то эти окруж­но­сти касаются.

2) Впи­сан­ные углы окруж­но­сти равны.

3) Если впи­сан­ный угол равен 30°, то дуга окружности, на ко­то­рую опирается этот угол, равна 60°.

4) Через любые че­ты­ре точки, не при­над­ле­жа­щие одной прямой, про­хо­дит единственная окружность.

6. Какие из сле­ду­ю­щих утвер­жде­ний верны?

1) Впи­сан­ные углы, опи­ра­ю­щи­е­ся на одну и ту же хорду окружности, равны.

2) Если ра­ди­у­сы двух окруж­но­стей равны 5 и 7, а рас­сто­я­ние между их цен­тра­ми равно 3, то эти окруж­но­сти не имеют общих точек.

3) Если ра­ди­ус окруж­но­сти равен 3, а рас­сто­я­ние от цен­тра окруж­но­сти до пря­мой равно 2, то эти пря­мая и окруж­ность пересекаются.

4) Если впи­сан­ный угол равен 30°, то дуга окружности, на ко­то­рую опи­ра­ет­ся этот угол, равна 60°.

Если утвер­жде­ний несколько, за­пи­ши­те их номера в по­ряд­ке возрастания.

7. Укажите номер верного утверждения.

1) Через любые три точки про­хо­дит не более одной окружности.

2) Если рас­сто­я­ние между цен­тра­ми двух окруж­но­стей боль­ше суммы их диаметров, то эти окруж­но­сти не имеют общих точек.

3) Если ра­ди­у­сы двух окруж­но­стей равны 3 и 5, а рас­сто­я­ние между их цен­тра­ми равно 1, то эти окруж­но­сти пересекаются.

4) Если дуга окруж­но­сти со­став­ля­ет 80°, то впи­сан­ный угол, опи­ра­ю­щий­ся на эту дугу окружности, равен 40°.

8. Укажите номер верного утверждения.

1) Сумма углов выпуклого четырехугольника равна 180°.

2) Если один из углов параллелограмма равен 60°, то противоположный ему угол равен 120°.

3) Диагонали квадрата делят его углы пополам.

4) Если в четырехугольнике две противоположные стороны равны, то этот четырехугольник — параллелограмм.

9. Укажите номер верного утверждения.

1) Если про­ти­во­по­лож­ные углы вы­пук­ло­го че­ты­рех­уголь­ни­ка равны, то этот четырехугольник — параллелограмм.

2) Если сумма трех углов вы­пук­ло­го че­ты­рех­уголь­ни­ка равна 200°, то его чет­вер­тый угол равен 160°.

3) Сумма двух про­ти­во­по­лож­ных углов че­ты­рех­уголь­ни­ка не пре­вос­хо­дит 180°.

4) Если ос­но­ва­ния тра­пе­ции равны 4 и 6, то сред­няя линия этой тра­пе­ции равна 10.

10. Укажите номер верного утверждения.

1) Если в па­рал­ле­ло­грам­ме диагонали равны, то этот параллелограмм — квадрат.

2) Если диа­го­на­ли параллелограмма делят его углы пополам, то этот параллелограмм — ромб.

3) Если один из углов, при­ле­жа­щих к сто­ро­не параллелограмма, равен 50°, то дру­гой угол, при­ле­жа­щий к той же стороне, равен 50°.

4) Если сумма трех углов вы­пук­ло­го четырехугольника равна 200°, то его чет­вер­тый угол равен 130°.

11. Укажите номер верного утверждения.

1) Около лю­бо­го ромба можно опи­сать окружность.

2) В любой тре­уголь­ник можно впи­сать не менее одной окружности.

3) Цен­тром окружности, опи­сан­ной около треугольника, яв­ля­ет­ся точка пе­ре­се­че­ния биссектрис.

4) Цен­тром окружности, впи­сан­ной в треугольник, яв­ля­ет­ся точка пе­ре­се­че­ния се­ре­дин­ных пер­пен­ди­ку­ля­ров к его сторонам.

12. Укажите номер верного утверждения.

1) Около всякого треугольника можно описать не более одной окружности.

2) В любой треугольник можно вписать не менее одной окружности.

3) Центром окружности, описанной около треугольника, является точка пересечения биссектрис.

4) Центром окружности, вписанной в треугольник, является точка пересечения серединных перпендикуляров к его сторонам.

13.Укажите номер верного утверждения.

1) Около лю­бо­го правильного мно­го­уголь­ни­ка можно опи­сать не более одной окружности.

2) Центр окружности, опи­сан­ной около тре­уголь­ни­ка со сторонами, рав­ны­ми 3, 4, 5, на­хо­дит­ся на сто­ро­не этого треугольника.

3) Цен­тром окружности, опи­сан­ной около квадрата, яв­ля­ет­ся точка пе­ре­се­че­ния его диагоналей.

4) Около лю­бо­го ромба можно опи­сать окружность.

14. Укажите номер верного утверждения.

1) Окружность имеет бесконечно много центров симметрии.

2) Прямая не имеет осей симметрии.

3) Правильный пятиугольник имеет пять осей симметрии.

4) Квадрат не имеет центра симметрии.

15. Укажите номер верного утверждения.

1) Пра­виль­ный шестиугольник имеет шесть осей симметрии.

2) Пря­мая не имеет осей симметрии.

3) Цен­тром симметрии ромба яв­ля­ет­ся точка пе­ре­се­че­ния его диагоналей.

4) Рав­но­бед­рен­ный треугольник имеет три оси симметрии.

16. Укажите номер верного утверждения.

1) Центром симметрии прямоугольника является точка пересечения биссектрис.

2) Центром симметрии ромба является точка пересечения его диагоналей.

3) Правильный пятиугольник имеет десять осей симметрии.

4) Центром симметрии равнобедренной трапеции является точка пересечения ее диагоналей.

17. Какие из следующих утверждений верны?

1) Если катет и гипотенуза прямоугольного треугольника равны соответственно 6 и 10, то второй катет этого треугольника равен 8.

2) Любые два равнобедренных треугольника подобны.

3) Любые два прямоугольных треугольника подобны.

4) Треугольник ABC, у которого AB = 3, BC = 4, AC = 5, является тупоугольным.

Если утвер­жде­ний несколько, за­пи­ши­те их номера в по­ряд­ке возрастания.

18. Какие из следующих утверждений верны?

1) Если площади фигур равны, то равны и сами фигуры.

2) Площадь трапеции равна произведению суммы оснований на высоту.

3) Если две стороны треугольника равны 4 и 5, а угол между ними равен 30°, то площадь этого треугольника равна 10.

4) Если две смежные стороны параллелограмма равны 4 и 5, а угол между ними равен 30°, то площадь этого параллелограмма равна 10.

Если утвер­жде­ний несколько, за­пи­ши­те их номера в по­ряд­ке возрастания.

19. Какие из сле­ду­ю­щих утвер­жде­ний верны?

1) Если две сто­ро­ны тре­уголь­ни­ка равны 3 и 5, то его тре­тья сто­ро­на боль­ше 3.

2) Внеш­ний угол тре­уголь­ни­ка равен сумме двух его внут­рен­них углов.

3) Если две сто­ро­ны и угол од­но­го тре­уголь­ни­ка со­от­вет­ствен­но равны двум сто­ро­нам и углу дру­го­го треугольника, то такие тре­уголь­ни­ки равны.

4) Если две сто­ро­ны тре­уголь­ни­ка равны 3 и 4, то его тре­тья сто­ро­на мень­ше 7.

20. Какие из следующих утверждений верны?

1) Через любые три точки проходит ровно одна прямая.

2) Сумма смежных углов равна 90 градусов.

3) Если при пересечении двух прямых третьей прямой соответственные углы составляют в сумме 180 градусов, то эти две прямые параллельны.

4) Через любые две точки проходит не более одной прямой.

21. Какие из дан­ных утвер­жде­ний верны? За­пи­ши­те их но­ме­ра.

1) Две окруж­но­сти пе­ре­се­ка­ют­ся, если ра­ди­ус одной окруж­но­сти боль­ше ра­ди­у­са дру­гой окруж­но­сти.

2) Если при пе­ре­се­че­нии двух пря­мых тре­тьей пря­мой внут­рен­ние на­крест ле­жа­щие углы равны, то эти пря­мые па­рал­лель­ны.

3) У рав­но­бед­рен­но­го тре­уголь­ни­ка есть центр сим­мет­рии.

22. Какие из дан­ных утвер­жде­ний верны? За­пи­ши­те их но­ме­ра.

1) Через точку, не ле­жа­щую на дан­ной пря­мой, можно про­ве­сти пря­мую, пер­пен­ди­ку­ляр­ную этой пря­мой.

2) Тре­уголь­ник со сто­ро­на­ми 1, 2, 4 су­ще­ству­ет.

3) Сумма квад­ра­тов диа­го­на­лей пря­мо­уголь­ни­ка равна сумме квад­ра­тов всех его сто­рон.

23. Какие из дан­ных утвер­жде­ний верны? За­пи­ши­те их но­ме­ра.

1) Про­тив боль­шей сто­ро­ны тре­уголь­ни­ка лежит мень­ший угол.

2) Любой квад­рат можно впи­сать в окруж­ность.

3) Пло­щадь тра­пе­ции равна про­из­ве­де­нию сред­ней линии на вы­со­ту.

24. Какие из дан­ных утвер­жде­ний верны? За­пи­ши­те их но­ме­ра.

1) Если три угла од­но­го тре­уголь­ни­ка со­от­вет­ствен­но равны трём углам дру­го­го тре­уголь­ни­ка, то такие тре­уголь­ни­ки по­доб­ны.

2) В любом пря­мо­уголь­ни­ке диа­го­на­ли вза­им­но пер­пен­ди­ку­ляр­ны.

3) У рав­но­сто­рон­не­го тре­уголь­ни­ка есть центр сим­мет­рии.

25. Какие из дан­ных утвер­жде­ний верны? За­пи­ши­те их но­ме­ра.

1) На плос­ко­сти су­ще­ству­ет един­ствен­ная точка, рав­но­удалённая от кон­цов от­рез­ка.

2) В любой тре­уголь­ник можно впи­сать окруж­ность.

3) Если в па­рал­ле­ло­грам­ме две смеж­ные сто­ро­ны равны, то такой па­рал­ле­ло­грамм яв­ля­ет­ся ром­бом.

26. Укажите номер верного утверждения.

1) Если в па­рал­ле­ло­грам­ме две сто­ро­ны равны, то такой па­рал­ле­ло­грамм яв­ля­ет­ся ром­бом.

2) Если в четырёхугольнике две диагонали равны и перпендикулярны, то такой четырёхугольник — квадрат.

3) Если в ромбе диагонали равны, то такой ромб является квадратом.

4) Углы при меньшем основании трапеции тупые.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Методические особенности изучения темы «Треугольники и четырёхугольники»
методическая разработка по математике (5, 6 класс)

Методические особенности изучения темы «Треугольники и четырёхугольники» в 5 классе к учебнику «Математика 5» Г.В.Дорофеев, И.Ф.Шарыгин, С.Б.Суворова и др.

Видео:КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | МатематикаСкачать

КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | Математика

Скачать:

ВложениеРазмер
treugolniki_i_chetyrehugolniki.docx46.1 КБ

Учитель геометрии планирует изучение темы треугольники четырехугольники и параллельные прямые впр

Бесплатный марафон подготовки к ЕГЭ на зимних каникулах

Учи.Дома запускает бесплатный марафон в котором каждый день. В течении 5 дней утром ты будешь получать одно задание по выбранному предмету, а вечером его решение. Твоя задача, успеть выполнение задание до того как получишь ответ.

Бесплатно, онлайн, подготовка к ЕГЭ

Видео:Геометрия 10 класс (Урок№2 - Четырехугольники.)Скачать

Геометрия 10 класс (Урок№2 - Четырехугольники.)

Предварительный просмотр:

Методические особенности изучения темы «Треугольники и четырехугольники»

Основная задача образования – создание личностью целостной картины мира, и, соответственно, процесс обучения, ориентированный на развитие личности, должен обеспечивать ребенка такими знаниями и в такой организации, чтобы он мог на их основе постепенно формировать целостное представление о мире.

Уникальность геометрии как учебного предмета заключается в том, что она позволяет достаточно рано устанавливать связи между естественными представлениями об окружающих предметах с их абстрактными моделями; формировать мыслительные операции различных видов и уровней; учитывать возрастные и индивидуальные особенности развития отдельных психических функций и протекания умственной деятельности в целом. Ясно, что успешное решение этих задач возможно лишь при условии непрерывного изучения данного предмета; вся же система обучения геометрии должна быть целостной и многоуровневой. С одной стороны, сама система геометрических знаний, подлежащих изучению и усвоению, на каждом этапе обучения также должна представлять целостную систему, обеспечивающую определенное отражение окружающей действительности. С другой стороны, каждый уровень обучения призван сформировать основы учебно-познавательной деятельности в области геометрии, необходимые для ее дальнейшего изучения, и обеспечить определенное, адекватное возрасту, интеллектуальное и личностное развитие ребенка.

Согласно федеральным государственным стандартам общего образования второго поколения изучение геометрии в основной школе дает возможность обучающимся достичь в предметном направлении следующих результатов:

· использовать геометрический язык для описания предметов окружающего мира; выполнять чертежи, делать рисунки, схемы по условию задачи;

· измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

· применять знания о геометрических фигурах и их свойствах для решения геометрических и практических задач.

Для того чтобы обучение младших школьников основам геометрии проходило наиболее успешно, за исходный пункт геометрии следует признать тот факт, что мы всюду вокруг себя видим различные границы: вот облако на синем небе – мы видим границу между небом и облаком; вот линия горизонта – она нам представляется границею между небом и землею; вот стена – и мы видим границу между нею и внутренностью комнаты и т. д. Ориентируясь на этом факте, можно прийти к заключению, что все наблюдаемые границы делятся на три категории: в одних случаях придется делать движение всей ладонью руки, как бы мазать, в других – делать движения лишь пальцем – обводить, и в третьих случаях придется лишь указывать. Далее можно прийти к убеждению, что отделить эти границы от предметов нельзя, и эти предметы мы называем поверхностями, линиями и точками. Эти объекты являются тем материалом, над которым работает геометрия. Возникает потребность разобраться в этом материале.

Проводя комбинационную работу, благодаря которой развивается и углубляется содержание геометрии, мы приходим к таким понятиям как луч, отрезок, угол, треугольник, четырехугольник и др.

Основываясь на таком построении содержания геометрического материала, пропедевтический курс геометрии должен представлять собой нечто цельное и стройное, чтобы учащиеся получили ряд ценных, полезных и систематизированных знаний, способствующих более легкому изучению основного курса геометрии. Содержание пропедевтического курса должны составлять плоские и пространственные геометрические образы или фигуры. Учащиеся наблюдают окружающий их мир и выделяют предметы определенной формы: прямоугольный параллелепипед (классная комната, шкаф), призма (граненый карандаш), цилиндр (железная труба), шар (мяч). При внимательном и подробном рассмотрении пространственных образов выделяются плоские геометрические образы: линии – прямая, кривая и ломаная (кромка стола, край стула); углы (угол стола, парты); треугольники, четырехугольники и т.д. При изучении этих фигур выявляются их свойства (равенство, равновеликость, возможность измерения). Таким образом, построение пропедевтического курса геометрии должно быть основано на процессе познания школьниками предметов окружающего мира.

У детей 11-12 лет осознанные побудительные мотивы к изучению геометрии еще, как правило, не сформировались. Поэтому формирование непосредственного интереса к содержанию этого предмета должно быть обусловлено интересными заданиями, связанными с практической деятельностью. С учетом особенностей развития детей указанного возраста геометрические понятия и факты необходимо вводить на основе имеющегося у них жизненного опыта, новых наблюдений, экспериментов, конструирования и моделирования. Ведь геометрические фигуры – это основные «кирпичики» геометрических знаний, они напоминают детали конструктора: из самых простых деталей с простейшими или изученными свойствами конструируются новые фигуры с более сложными свойствами. Поэтому изучаемый материал желательно наполнить многочисленными рисунками и чертежами, значительную часть которых могут сопровождать нарисованные учениками наглядные геометрические фигуры. Чертежи и рисунки – эффективное средство формирования у учащихся умений подмечать закономерности на основе наблюдений, вычислений, сопоставлений. Они способствуют в большей степени лучшему усвоению свойств и понятий, развивают мышление, помогают в запоминании наиболее трудного для восприятия материала, упрощают решение задач, приводят к открытию какого-то факта. То есть ученики на конкретном примере могут сами увидеть те свойства, которыми обладает данный изучаемый объект, вычленить из предложенного готового чертежа самое главное, что заключает максимум информации.

Обучение младших школьников теме «Треугольники и четырехугольники» должно быть также подчинено всем особенностям построения пропедевтического курса геометрии, которые перечислены выше.

При изучении в 5 классе темы «Треугольники и четырехугольники» (по учебнику математики авторов: Г.В. Дорофеев, И.Ф. Шарыгин, С.Б. Суворова и др.) ставятся следующие основные методические цели: познакомить учащихся с классификацией треугольников по сторонам и углам; развить представления о прямоугольнике; сформировать понятие равных фигур, площади фигуры, научить находить площади прямоугольников и фигур, составленных из прямоугольников; познакомить с единицами измерения площадей. Учащиеся углубляют свои знания о треугольниках и четырехугольниках, они знакомятся со свойствами равнобедренного треугольника, а также со свойствами прямоугольника, изучают понятие равных фигур. Заметим, что у учащихся уже есть интуитивное представление о равных фигурах. Оно сформировалось в ходе выполнения таких заданий, как вырезание фигур из бумаги, перечерчивание фигуры по клеткам квадратной сетки и др. При этом речь шла о построении «такой же» фигуры, как данная, о вырезании «одинаковых» фигур. Теперь интуитивные представления учащихся обобщаются и систематизируются. Вводится термин «равные фигуры» и разъясняется, что так называют фигуры, которые могут быть совмещены друг с другом путем наложения. Это понятие конкретизируется по отношению к уже известным фигурам: отрезкам, углам, окружностям и др. Линия измерения геометрических величин продолжается темой «Площадь фигуры». Из начальной школы учащимся известно, как найти площадь прямоугольника. Здесь эти знания актуализируются, отрабатываются и расширяются: формируется представление о площади фигуры как о числе единичных квадратов, составляющих данную фигуру; о свойстве аддитивности площади (без соответствующей терминологии); правило вычисления площади квадрата формулируется через понятие «квадрат числа»; вводятся новые единицы площади (гектар, ар); выявляются зависимости между единицами площади, объясняется, как можно приближенно вычислить площадь круга.

Все вышеописанное дает возможность поставить следующие задачи при изучении темы «Треугольники и четырехугольники» в 5 классе:

· широкое ознакомление с основными понятиями данной темы, а именно понятиями: равные фигуры, виды треугольников;

· наблюдение изученных геометрических форм в окружающих предметах и формирование на этой основе абстрактных геометрических фигур и отношений;

· усвоение геометрической терминологии и символики по данной теме;

· осмысленное запоминание и воспроизведение достаточно большого числа определений и свойств изученных геометрических фигур;

· сравнение и измерение геометрических величин:

· решение специально подобранных упражнений и задач, по заданной теме, направленных на формирование приемов мыслительной деятельности;

· формирование потребности к логическим обоснованиям и рассуждениям при изучении треугольников и четырехугольников

· специальное обучение математическому моделированию как методу решения практических задач.

В результате изучения темы учащиеся должны получить представления и овладеть следующими знаниями, умениями и навыками, составляющими обязательный минимум:

· знать определения одних основных геометрических понятий (треугольник, четырехугольник) и получить представления о других (прямоугольный треугольник, равнобедренный треугольник, равносторонний треугольник, квадрат);

· выделять известные фигуры (треугольники, четырехугольники) и отношения на чертежах, моделях и в окружающих предметах;

· иметь навыки работы с измерительными и чертежными инструментами;

· изображать геометрические величины; выражать одни единицы измерения (длин, площадей) через другие;

· вычислять значения геометрических величин (площадей, длин), применяя изученные свойства и формулы;

· проводить несложные рассуждения и обоснования в процессе решения задач, предусмотренных содержанием темы;

· пользоваться геометрической символикой (при изображении треугольников, четырехугольников);

· устанавливать связь геометрических фигур и их свойств с окружающими предметами.

Для того чтобы у учителя, работающего по указанному выше учебнику, были широкие возможности сформировать у школьников перечисленные знания, умения и навыки, нами была составлена система упражнений, которую они могут использовать в своей работе.

Исходя из анализа особенностей изучения геометрического материала в 5-6 классах, нами были разработаны методические принципы для составления системы упражнений по теме «Треугольники и четырехугольники». Основой для их составления были:

· учет возрастных особенностей учащихся 5-6 классов;

· особенности восприятия геометрического материала школьниками данного возраста;

· анализ геометрического материала, содержащегося в учебниках по математике для 5-6 классов;

· ориентация на преемственность учебного материала начальной и средней школы.

Методические принципы состоят в следующем.

1. Принцип наглядно-деятельностной геометрии.

Задания должны носить наглядно-деятельностный характер, т.е. содержать много наглядных, образных элементов и побуждать к мыслительной и практической деятельности с геометрическими фигурами.

2. Принцип познания законов природы средствами геометрии.

Упражнения должны быть соотнесены с объектами окружающего мира, их свойствами, т.е. позволяющие научиться измерять, сравнивать, вычислять, распознавать геометрические свойства в объектах природы.

3. Принцип развития образного мышления и изобразительных умений.

Задания должны содержать достаточное количество геометрических образов и включать в себя элементы изображений и построений.

Составленная и приведенная в следующем параграфе система упражнений базируется на этих принципах и ориентирована на учебник по математике для 5 класса общеобразовательных учебных заведений авторов: Г.В. Дорофеев, И.Ф. Шарыгин, С.Б. Суворова и др.

Тема 2. Прямоугольники.

Прямоугольник является для учащихся, пожалуй, самой известной фигурой. Однако из-за недостаточной геометрической подготовки учащихся в начальной школе многие из них воспринимают его как единую фигуру и не видят составляющие его элементы. По этой причине квадрат и прямоугольник для них две различные фигуры, две различные формы: квадратная и прямоугольная. Восполнить этот пробел не удастся, лишь сообщив им, что квадрат тоже прямоугольник. К этой мысли они должны привыкнуть при выполнении упражнений: учащиеся смогут понять, что если некоторое свойство имеет место для прямоугольника общего вида, то оно имеет место и для квадрата, а вот обратное неверно: то, что выполняется для квадрата, может и не выполняться для прямоугольника общего вида. Учащиеся должны научиться изображать квадрат и прямоугольник с заданными сторонами на клетчатой и нелинованной бумаге от руки и с использованием инструментов, моделировать их из бумаги. Новые для учащихся свойства прямоугольника связаны в основном с его диагоналями. При изучении этой темы они узнают, что диагонали прямоугольника равны и в точке пересечения делятся пополам. При изучении следующих тем, где речь идет о равенстве фигур, им предстоит узнать, что диагональ делит прямоугольник на два равных прямоугольных треугольника, а две диагонали — на две пары равных равнобедренных треугольников.

Задачи по теме 2.

1. Ученикам раздается комплект разноцветных четырехугольников, среди которых есть прямоугольники, квадраты, неправильные четырехугольники. Назовите:

а) квадраты и обоснуйте, что это квадраты;

б) прямоугольники и обоснуйте, что это прямоугольники;

в) проведите диагонали у прямоугольника, у квадрата; измерьте диагонали прямоугольника и сделайте вывод; какие углы образует диагональ со сторонами квадрата?

2. С помощью прямоугольного листа бумаги докажите, что диагонали прямоугольника точкой пересечения делятся пополам (можно использовать дополнительные построения диагоналей).

3. С помощью квадратного листа бумаги доказать, что диагонали квадрата пересекаются под прямым углом.

4. а) Какой длины забор нужно купить, чтобы огородить садовый участок со стороной 5 м?

5. Постройте прямоугольник, площадь которого равна 12 дм2, четырьмя различными способами.

6. Постройте прямоугольник, периметр которого равен 18 дм, четырьмя различными способами.

7. Постройте четырехугольник, такой, что его площадь и периметр выражаются натуральными числами, одно из которых в 2 раза больше другого. Найдите 2 решения.

8. Какой длины закупить забор, чтобы оградить садовый участок прямоугольной формы, если его ширина равна 3 м, а длина 10 м?

9. Найдите периметр прямоугольника со сторонами 22 м и 14 м.

10.Периметр прямоугольника равен 18 см. Одна сторона больше другой на 1 см. Начертите в тетради такой прямоугольник.

11.Определите на глаз периметр вашей комнаты. Проведите необходимые измерения и проверьте, насколько вы были точны.

12.Постройте два квадрата, площадью по 25 дм2 каждый, таким образом, чтобы в общей части этих квадратов и их внутренних областей образовался прямоугольный треугольник.

Тема 3. Равенство фигур.

Интуитивное понимание учащимися равенства как одинаковости, идентичности использовалось нами при различных видах копирования геометрических фигур. Здесь это интуитивное представление осмысливается и формулируется в виде определения понятия равенства.

Одна из задач при изучении этой темы — научить учащихся находить в равных фигурах соответственно равные элементы, а также записывать необходимые равенства. Помимо этого, учащиеся должны увидеть и запомнить, что диаметр разбивает круг на два равных полукруга; диагональ разбивает прямоугольник на два равных треугольника. Заметим, что в ходе изучения этой темы опосредованно формируется чрезвычайно важное умение — делить фигуру на равные доли. Это умение, а также соответствующие образы составляют наглядную опору для изучения обыкновенных дробей. Учащиеся должны научиться делить на равные части, в том числе и без инструментов, отрезок, прямоугольник, квадрат, круг.

Задачи по теме 3.

1.Начертите какой-нибудь отрезок. Разделите его от руки на 2, 4, 8 равных частей.

2. Начертите какой-нибудь угол. Проведите на глаз биссектрису угла. Проведите биссектрисы каждого из получившихся углов. На сколько равных частей вы разделили исходный угол?

3. Начертите круг. Разделите его на 2, 4, 8 равных частей. Сколько диаметров вы провели? Сколько диаметров нужно провести, чтобы разбить круг на 16 равных частей? на 32 равные части?

4. Начертите квадрат и разделите его на 8 равных частей разными способами.

5. Начертите прямоугольник и разделите его на 16 равных частей.

6. Возьмите квадрат и проведите его диагонали. Разрежьте квадрат по его диагоналям. Какие фигуры вы получили? Равны ли они? Сложите из частей квадрата следующие фигуры и зарисуйте их:

г) четырехугольник, не являющийся прямоугольником;

7. Опровергните утверждение, сделав чертеж.

а) Два прямоугольника равны, если у них есть по одной равной стороне.

б) Два треугольника равны, если две стороны одного треугольника равны двум сторонам другого треугольника.

8. Начертите прямоугольник, обозначьте его. Проведите диагонали и обозначьте точку их пересечения. Перечислите все получившиеся треугольники. Есть ли среди них равные треугольники? Назовите их.

Тема 4. Площадь прямоугольника.

Несмотря на то, что понятие «площадь фигуры» и правило вычисления площади прямоугольника известны учащимся из начальной школы, говорить о сформированности этого сложного понятия преждевременно. Поэтому целесообразно снова вернуться к рассмотрению этого вопроса. Новым для учащихся будет то, что первоначально площадь находится в абстрактных единицах — вводятся понятия «единица длины» и «квадратная единица».

Учащиеся должны научиться понимать, что подразумевается под квадратными единицами(1 кв. см, 1 кв. м, 1 кв. дм) и научиться использовать степенную форму записи (см2 , дм2, м2). Основным результатом изучения данной темы следует считать умение находить площадь прямоугольника по правилу, при этом должно быть сформировано понимание понятия площади фигуры и его практического применения.

Задачи по теме 4.

1. Вырежьте из листа бумаги в клетку 8 одинаковых квадратов со стороной, равной 4 клеткам.

а) сложите из этих квадратов какой-нибудь многоугольник; чему равна его площадь, если один квадрат принять за квадратную единицу?

б) сложите прямоугольник, площадь которого была бы равна 8 кв. единиц; сколько таких прямоугольников можно сложить? каковы длины сторон каждого из этих прямоугольников?

2. Начертите прямоугольник со сторонами 4 см и 2 см 5 мм. Найдите его площадь: а) в квадратных сантиметрах; б) в клеточках разлиновки листа тетради; в) в квадратных миллиметрах.

3. Используя клетки тетради, нарисуйте какую-нибудь фигуру, площадь которой равна: а) 6 см2; б) 11 см2; в) 7 см2.

4. Площадь квадрата равна 64 см2. Чему равна его сторона?

5. а) Как изменится площадь прямоугольника, если одну из его сторон уменьшить в 3 раза?

б) Как изменится площадь квадрата, если его сторону увеличить вдвое?

6. Покажите, что площадь фигуры равна 13 клеткам.

7. Сторона квадрата равна 18 см. Периметр прямоугольника равен периметру квадрата. Длина прямоугольника в 11 раз больше ширины.

а) Найдите площадь прямоугольника в квадратных миллиметрах.

б) Найдите площадь квадрата.

в) Сравните площади геометрических фигур.

8. Можно ли поместить в прямоугольник со сторонами 5 см и 3 см: а) два прямоугольника со сторонами 2 см и 4 см; б) квадрат со стороной 3 см и прямоугольник со стороной 1 см и 3 см; в) квадрат со стороной 3 см и прямоугольник со сторонами 4 см и 17 мм? Объясните свое мнение.

9. Сторона одного квадрата в 2 раза больше, чем сторона другого квадрата. Нарисуйте такие квадраты. Во сколько раз площадь второго квадрата больше площади первого?

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

По теме: методические разработки, презентации и конспекты

Учитель геометрии планирует изучение темы треугольники четырехугольники и параллельные прямые впр

Методические особенности изучения неравенств в школьном курсе математики

Предлагаю Вашему вниманию материал о методических особенностях изучения неравенств в школьном курсе математики.

Учитель геометрии планирует изучение темы треугольники четырехугольники и параллельные прямые впр

МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ ИЗУЧЕНИЯ ГЕОМЕТРИЧЕСКОГО МАТЕРИАЛА НА УРОКАХ МАТЕМАТИКИ В 5-6- КЛАССАХ

Богатым арсеналом эффективных средств для всестороннего развития мышления учащихся располагает курс школьной геометрии. Особая роль при развитии учащихся средствами геометрии при этом отводится изучен.

Учитель геометрии планирует изучение темы треугольники четырехугольники и параллельные прямые впр

Методические особенности контроля знаний, умений и навыков учащихся при изучении линии уравнений в основной школе.

В статье рассматриваются методические особенности контроля знаний, умений и навыков учащихся при изучении линии уравнений в основной школе. На основе проведенного анализа, выбраны формы и м.

Открытый урок Повторение изученного по теме «Четырёхугольники»

Данный материал поможет коллегам в подготовке к уроку — повторению по теме «Четырёхугольники».

Учитель геометрии планирует изучение темы треугольники четырехугольники и параллельные прямые впр

Методические особенности изучения раздела «Основы алгоритмизации» в основной школе в контексте ФГОС

В нашем мире современному человеку все чаще приходится сталкиваться с большими объемами информации. И от того насколько эффективно он с ней работает, будет зависеть его жизненный и профессиональный ус.

Методические особенности изучения словосочетания как единицы синтаксиса

Изучение синтаксиса требует тщательного анализа единиц языка, причём их многообразие становится доступным обучающимся, если они проявляют аналитические способности – способность рассуждать, сопо.

Методические особенности изучения темы «Треугольники и четырёхугольники»

Методические особенности изучения темы «Треугольники и четырехугольники» в 5 классе к учебнику «Математика 5» Г.В.Дорофеев, И.Ф.Шарыгин, С.Б.Суворова и др.

Видео:Четырехугольник | Геометрия 7-9 класс #41 | ИнфоурокСкачать

Четырехугольник | Геометрия 7-9 класс #41 | Инфоурок

Учитель геометрии планирует изучение темы треугольники четырехугольники и параллельные прямые впр

Учитель геометрии планирует изучение темы треугольники четырехугольники и параллельные прямые впр

На рисунке внизу представлен эскиз крышки журнального столика.

Проведи прямую линию так, чтобы прямоугольник на эскизе оказался разбит на треугольник и четырёхугольник.

На рисунке внизу представлен эскиз крышки журнального столика. Найди площадь крышки столика, если длина одной клетки соответствует 1 дм. В ответе укажите число.

Площадь крышки стола — площадь прямоугольника. Площадь прямоугольника равна произведению длин его сторон, т. е.: Учитель геометрии планирует изучение темы треугольники четырехугольники и параллельные прямые впр.

🌟 Видео

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Задача, которую боятсяСкачать

Задача, которую боятся

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Учебник 5кл.Темы урока: "Четырёхугольники.Треугольники.Периметр четырёхугольников."Скачать

Учебник 5кл.Темы урока: "Четырёхугольники.Треугольники.Периметр четырёхугольников."

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Геометрия 7 класса в одной задаче. Геометрия 7 класс кратко | МатематикаСкачать

Геометрия 7 класса в одной задаче. Геометрия 7 класс кратко | Математика

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Задание 6. Часть 2. ЧетырехугольникиСкачать

Задание 6. Часть 2. Четырехугольники

Четырехугольники часть 1Скачать

Четырехугольники часть 1

Математика 5 класс (Урок№29 - Четырёхугольники.)Скачать

Математика 5 класс (Урок№29 - Четырёхугольники.)

8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Четырехугольники. Геометрия 8 класс.Скачать

Четырехугольники.  Геометрия 8 класс.

Параллельные прямые (задачи).Скачать

Параллельные прямые (задачи).

МЕРЗЛЯК 7 ГЕОМЕТРИЯ. КОНТРОЛЬНАЯ РАБОТА - 3Скачать

МЕРЗЛЯК 7 ГЕОМЕТРИЯ. КОНТРОЛЬНАЯ РАБОТА -  3
Поделиться или сохранить к себе: