Обязательно ли прямые лежащие в параллельных плоскостях параллельны

Параллельность прямых и плоскостей
Содержание
  1. Параллельные прямые
  2. Признак параллельности прямых
  3. Параллельные прямая и плоскость
  4. Признак параллельности прямой и плоскости
  5. Свойство прямой, параллельной данной плоскости
  6. Параллельные плоскости
  7. Признаки параллельности плоскостей
  8. Свойства параллельных плоскостей
  9. Параллельность плоскостей: признак, условие
  10. С какими трудностями приходится сталкиваться
  11. Параллельные плоскости на примерах
  12. Где и как применяется теория параллельных плоскостей
  13. О параллельности прямой и плоскости
  14. Необходимость использования признака параллельности
  15. Дополнительные теоремы
  16. Понятие необходимого и достаточного условия
  17. Основные свойства
  18. Параллельные прямая и плоскость, признак и условия параллельности прямой и плоскости
  19. Параллельные прямые и плоскость – основные сведения
  20. Параллельность прямой и плоскости – признак и условия параллельности
  21. 💥 Видео

Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Параллельные прямые

Параллельные прямые – прямые, которые лежат в одной плоскости и не пересекаются.

Обязательно ли прямые лежащие в параллельных плоскостях параллельны

Признак параллельности прямых

Две прямые, параллельные третьей, параллельны между собой.

Обязательно ли прямые лежащие в параллельных плоскостях параллельны

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Параллельные прямая и плоскость

Прямая и плоскость называются параллельными , если они не имеют общих точек.

Признак параллельности прямой и плоскости

Если прямая, не принадлежащая данной плоскости, параллельна какой-нибудь прямой этой плоскости, то она параллельна этой плоскости.

Обязательно ли прямые лежащие в параллельных плоскостях параллельны

Свойство прямой, параллельной данной плоскости

Если плоскость β проходит через прямую a , параллельную плоскости α , и пересекает эту плоскость по прямой b , то b || a .

Обязательно ли прямые лежащие в параллельных плоскостях параллельны

Видео:Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

Параллельные плоскости

Параллельные плоскости – плоскости, которые не пересекаются.

Признаки параллельности плоскостей

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то такие плоскости параллельны.

Обязательно ли прямые лежащие в параллельных плоскостях параллельны

Если каждая из двух данных плоскостей параллельна третьей плоскости, то данные две плоскости параллельны между собой.Обязательно ли прямые лежащие в параллельных плоскостях параллельны

Свойства параллельных плоскостей

Если две параллельные плоскости пересекаются третьей плоскостью, то линии пересечения плоскостей параллельны.

Обязательно ли прямые лежащие в параллельных плоскостях параллельны

Отрезки параллельных прямых, заключенные между двумя параллельными плоскостями, равны.

Обязательно ли прямые лежащие в параллельных плоскостях параллельны

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:ПАРАЛЛЕЛЬНЫЕ ПЛОСКОСТИ 10 класс стереометрияСкачать

ПАРАЛЛЕЛЬНЫЕ ПЛОСКОСТИ 10 класс стереометрия

Параллельность плоскостей: признак, условие

Всем, кто когда-либо учился или сейчас учится в школе, приходилось сталкиваться с различными трудностями при изучении дисциплин, которые включены в программу, разработанную Министерством образования.

Видео:Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)Скачать

Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)

С какими трудностями приходится сталкиваться

Изучение языков сопровождается зазубриванием имеющихся грамматических правил и основных исключений из них. Физкультура требует от учеников большой выкладки, хорошей физической формы и огромного терпения.

Обязательно ли прямые лежащие в параллельных плоскостях параллельны

Примером могут служить аксиомы, объясняющие теорию параллельности плоскостей, которые необходимо обязательно запомнить, так как они лежат в основе всего курса школьной программы по стереометрии. Давайте попробуем разобраться, как проще и быстрее это можно сделать.

Видео:№16. Параллельные прямые a и b лежат в плоскости α. Докажите,Скачать

№16. Параллельные прямые a и b лежат в плоскости α. Докажите,

Параллельные плоскости на примерах

Аксиома, указывающая на параллельность плоскостей, звучит следующим образом: «Любые две плоскости считаются параллельными только в том случае, если они не содержат общих точек», то есть не пересекаются друг с другом. Чтобы более детально представить себе данную картину, в качестве элементарного примера можно привести отношение потолка и пола или противоположных стен в здании. Становится сразу понятно, что имеется в виду, а также подтверждается тот факт, что эти плоскости в обычном случае никогда не пересекутся.

Обязательно ли прямые лежащие в параллельных плоскостях параллельны

Другим примером может служить оконный стеклопакет, где в качестве плоскостей выступают полотна стекол. Они также ни при каких условиях не будут образовывать точек пересечения между собой. Дополнительно к этому можно добавить книжные полки, кубик Рубика, где плоскостями являются его противоположные грани, и прочие элементы быта.

Обозначаются рассматриваемые плоскости специальным знаком в виде двух прямых «||», которые наглядно иллюстрируют параллельность плоскостей. Таким образом, применяя реальные примеры, можно сформировать более четкое восприятие темы, а, следовательно, можно переходить далее к рассмотрению более сложных понятий.

Видео:Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

Где и как применяется теория параллельных плоскостей

При изучении школьного курса геометрии ученикам приходится сталкиваться с разносторонними задачами, где зачастую необходимо определить параллельность прямых, прямой и плоскости между собой или зависимость плоскостей друг от друга. Анализируя имеющееся условие, каждую задачу можно соотнести к четырем основным классам стереометрии.

К первому классу относят задачи, в условии которых необходимо определить параллельность прямой и плоскости между собой. Ее решение сводится к доказательству одноименной теоремы. Для этого нужно определить, имеется ли для прямой, не принадлежащей рассматриваемой плоскости, параллельная прямая, лежащая в этой плоскости.

Ко второму классу задач относятся те, в которых задействуют признак параллельности плоскостей. Его применяют для того, чтобы упростить процесс доказательства, тем самым значительно сокращая время на поиск решения.

Следующий класс охватывает спектр задач о соответствии прямых основным свойствам параллельности плоскостей. Решение задач четвертого класса заключается в определении, выполняется ли условие параллельности плоскостей. Зная, как именно происходит доказательство той или иной задачи, ученикам становится проще ориентироваться при применении имеющегося арсенала геометрических аксиом.

Таким образом, задачи, условие которых требует определить и доказать параллельность прямых, прямой и плоскости или двух плоскостей между собой, сводятся к правильному подбору теоремы и решению согласно имеющемуся набору правил.

Видео:10 класс, 10 урок, Параллельные плоскостиСкачать

10 класс, 10 урок, Параллельные плоскости

О параллельности прямой и плоскости

Параллельность прямой и плоскости – особая тема в стереометрии, так как именно она является базовым понятием, на которое опираются все последующие свойства параллельности геометрических фигур.

Обязательно ли прямые лежащие в параллельных плоскостях параллельны

Согласно имеющимся аксиомам, в случае когда две точки прямой принадлежат некоторой плоскости, можно сделать вывод, что данная прямая также лежит в ней. В сложившейся ситуации становится ясно, что возможны три варианта расположения прямой относительно плоскости в пространстве:

  1. Прямая принадлежит плоскости.
  2. Для прямой и плоскости имеется одна общая точка пересечения.
  3. Для прямой и плоскости точки пересечения отсутствуют.

Нас, в частности, интересует последний вариант, когда отсутствуют какие-либо точки пересечения. Только тогда можно говорить о том, что прямая и плоскость относительно друг друга являются параллельными. Таким образом, подтверждается условие основной теоремы о признаке параллельности прямой и плоскости, которая гласит, что: «Если прямая, не принадлежащая рассматриваемой плоскости, параллельна любой прямой на этой плоскости, то рассматриваемая прямая также является параллельной данной плоскости».

Видео:Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Необходимость использования признака параллельности

Признак параллельности плоскостей, как правило, используется для поиска упрощенного решения задач о плоскостях. Суть данного признака состоит в следующем: «Если имеются две пересекающиеся прямые, лежащие в одной плоскости, параллельные двум прямым, принадлежащим другой плоскости, то такие плоскости можно назвать параллельными».

Обязательно ли прямые лежащие в параллельных плоскостях параллельны

Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

Дополнительные теоремы

Помимо использования признака, доказывающего параллельность плоскостей, на практике можно встретиться с применением двух других дополнительных теорем. Первая представлена в следующей форме: «Если одна из двух параллельных плоскостей параллельна третьей, то и вторая плоскость либо тоже параллельна третьей, либо полностью совпадает с ней».

Базируясь на использовании приводимых теорем, всегда можно доказать параллельность плоскостей относительно рассматриваемого пространства. Вторая теорема отображает зависимость плоскостей от перпендикулярной прямой и имеет вид: «Если две несовпадающие плоскости перпендикулярны по отношению к некоторой прямой, то они считаются параллельными друг другу».

Видео:10 класс, 6 урок, Параллельность прямой и плоскостиСкачать

10 класс, 6 урок, Параллельность прямой и плоскости

Понятие необходимого и достаточного условия

При неоднократном решении задач доказательства параллельности плоскостей было выведено необходимое и достаточное условие параллельности плоскостей. Известно, что любая плоскость задается параметрическим уравнением вида: А1х+ В1у+ C1z+D1 =0. Наше условие базируется на использовании системы уравнений, задающих расположение плоскостей в пространстве, и представлено следующей формулировкой: «Для доказательства параллельности двух плоскостей необходимо и достаточно, чтобы система уравнений, описывающих эти плоскости, была несовместной, то есть не имела решения».

Видео:Параллельность прямых, плоскостей, прямой и плоскости | Математика ЕГЭ для 10 класса | УмскулСкачать

Параллельность прямых, плоскостей, прямой и плоскости | Математика ЕГЭ для 10 класса | Умскул

Основные свойства

Однако при решении геометрических задач использования признака параллельности не всегда бывает достаточно. Иногда возникает ситуация, когда необходимо доказать параллельность двух и более прямых в различных плоскостях или равенство отрезков, заключенных на этих прямых. Для этого применяют свойства параллельности плоскостей. В геометрии их насчитывается всего два.

Обязательно ли прямые лежащие в параллельных плоскостях параллельны

Первое свойство позволяет судить о параллельности прямых в определенных плоскостях и представлено в следующем виде: «Если две параллельные плоскости пересечь третьей, то прямые, образованные линиями пересечения, будут также параллельны друг другу».

Обязательно ли прямые лежащие в параллельных плоскостях параллельны

Смысл второго свойства состоит в том, чтобы доказать равенство отрезков, расположенных на параллельных прямых. Его трактовка представлена ниже. «Если рассматривать две параллельные плоскости и заключить между ними область, то можно утверждать, что длина образованных этой областью отрезков будет одинакова».

Видео:Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.

Параллельные прямая и плоскость, признак и условия параллельности прямой и плоскости

Статья рассматривает понятия параллельность прямой и плоскости. Будут рассмотрены основные определения и приведены примеры. Рассмотрим признак параллельности прямой к плоскости с необходимыми и достаточными условиями параллельности, подробно решим примеры заданий.

Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Параллельные прямые и плоскость – основные сведения

Прямая и плоскость называются параллельными, если не имеют общих точек, то есть не пересекаются.

Параллельность обозначается « ∥ ». Если в задании по условию прямая a и плоскость α параллельны, тогда обозначение имеет вид a ∥ α . Рассмотрим рисунок, приведенный ниже.

Обязательно ли прямые лежащие в параллельных плоскостях параллельны

Считается, что прямая a , параллельная плоскости α и плоскость α , параллельная прямой a , равнозначные, то есть прямая и плоскость параллельны друг другу в любом случае.

Видео:10 класс, 5 урок, Параллельность трех прямыхСкачать

10 класс, 5 урок, Параллельность трех прямых

Параллельность прямой и плоскости – признак и условия параллельности

Не всегда очевидно, что прямая и плоскость параллельны. Зачастую это нужно доказать. Необходимо использовать достаточное условие, которое даст гарантию на параллельность. Такой признак имеет название признака параллельности прямой и плоскости. Предварительно рекомендуется изучить определение параллельных прямых.

Если заданная прямая a , не лежащая в плоскости α , параллельна прямой b , которая принадлежит плоскости α , тогда прямая a параллельна плоскости α .

Рассмотрим теорему, используемую для установки параллельности прямой с плоскостью.

Если одна из двух параллельных прямых параллельна плоскости, то другая прямая лежит в этой плоскости либо параллельна ей.

Подробное доказательство рассмотрено в учебнике 10 — 11 класса по геометрии. Необходимым и достаточным условием параллельности прямой с плоскостью возможно при наличии определения направляющего вектора прямой и нормального вектора плоскости.

Для параллельности прямой a , не принадлежащей плоскости α , и данной плоскости необходимым и достаточным условием является перпендикулярность направляющего вектора прямой с нормальным вектором заданной плоскости.

Условие применимо, когда необходимо доказать параллельность в прямоугольной системе координат трехмерного пространства. Рассмотрим подробное доказательство.

Допустим, прямая а в систему координат О х у задается каноническими уравнениями прямой в пространстве , которые имеют вид x — x 1 a x = y — y 1 a y = z — z 1 a z или параметрическими уравнениями прямой в пространстве x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , плоскостью α с общими уравнениями плоскости A x + B y + C z + D = 0 .

Отсюда a → = ( a x , a y , a z ) является направляющим вектором с координатами прямой а, n → = ( A , B , C ) — нормальным вектором заданной плоскости альфа.

Чтобы доказать перпендикулярность n → = ( A , B , C ) и a → = ( a x , a y , a z ) , нужно использовать понятие скалярного произведения. То есть при произведении a → , n → = a x · A + a y · B + a z · C результат должен быть равен нулю из условия перпендикулярности векторов.

Значит, что необходимым и достаточным условием параллельности прямой и плоскости запишется так a → , n → = a x · A + a y · B + a z · C . Отсюда a → = ( a x , a y , a z ) является направляющим вектором прямой a с координатами, а n → = ( A , B , C ) — нормальным вектором плоскости α .

Определить, параллельны ли прямая x = 1 + 2 · λ y = — 2 + 3 · λ z = 2 — 4 · λ с плоскостью x + 6 y + 5 z + 4 = 0 .

Получаем, что предоставленная прямая не принадлежит плоскости, так как координаты прямой M ( 1 , — 2 , 2 ) не подходят. При подстановке получаем, что 1 + 6 · ( — 2 ) + 5 · 2 + 4 = 0 ⇔ 3 = 0 .

Необходимо проверить на выполнимость необходимое и достаточное условие параллельности прямой и плоскости. Получим, что координаты направляющего вектора прямой x = 1 + 2 · λ y = — 2 + 3 · λ z = 2 — 4 · λ имеют значения a → = ( 2 , 3 , — 4 ) .

Нормальным вектором для плоскости x + 6 y + 5 z + 4 = 0 считается n → = ( 1 , 6 , 5 ) . Перейдем к вычислению скалярного произведения векторов a → и n → . Получим, что a → , n → = 2 · 1 + 3 · 6 + ( — 4 ) · 5 = 0 .

Значит, перпендикулярность векторов a → и n → очевидна. Отсюда следует, что прямая с плоскостью являются параллельными.

Ответ: прямая с плоскостью параллельны.

Определить параллельность прямой А В в координатной плоскости О у z , когда даны координаты A ( 2 , 3 , 0 ) , B ( 4 , — 1 , — 7 ) .

По условию видно, что точка A ( 2 , 3 , 0 ) не лежит на оси О х , так как значение x не равно 0 .

Для плоскости O x z вектор с координатами i → = ( 1 , 0 , 0 ) считается нормальным вектором данной плоскости. Обозначим направляющий вектор прямой A B как A B → . Теперь при помощи координат начала и конца рассчитаем координаты вектора A B . Получим, что A B → = ( 2 , — 4 , — 7 ) . Необходимо выполнить проверку на выполнимость необходимого и достаточного условия векторов A B → = ( 2 , — 4 , — 7 ) и i → = ( 1 , 0 , 0 ) , чтобы определить их перпендикулярность.

Запишем A B → , i → = 2 · 1 + ( — 4 ) · 0 + ( — 7 ) · 0 = 2 ≠ 0 .

Отсюда следует, что прямая А В с координатной плоскостью О y z не являются параллельными.

Ответ: не параллельны.

Не всегда заданное условие способствует легкому определению доказательства параллельности прямой и плоскости. Появляется необходимость в проверке принадлежности прямой a плоскости α . Существует еще одно достаточное условие, при помощи которого доказывается параллельность.

При заданной прямой a с помощью уравнения двух пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 , плоскостью α — общим уравнением плоскости A x + B y + C z + D = 0 .

Необходимым и достаточным условием для параллельности прямой a и плоскости α яляется отсутствие решений системы линейных уравнений, имеющей вид A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 .

Из определения следует, что прямая a с плоскостью α не должна иметь общих точек, то есть не пересекаться, только в этом случае они будут считаться параллельными. Значит, система координат О х у z не должна иметь точек, принадлежащих ей и удовлетворяющих всем уравнениям:

A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 , а также уравнению плоскости A x + B y + C z + D = 0 .

Следовательно, система уравнений, имеющая вид A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 , называется несовместной.

Верно обратное: при отсутствии решений системы A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 не существует точек в О х у z , удовлетворяющих всем заданным уравнениям одновременно. Получаем, что нет такой точки с координатами, которая могла бы сразу быть решениями всех уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 и уравнения A x + B y + C z + D = 0 . Значит, имеем параллельность прямой и плоскости, так как отсутствуют их точки пересечения.

Система уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 не имеет решения, когда ранг основной матрицы меньше ранга расширенной. Это проверяется теоремой Кронекера-Капелли для решения линейных уравнений. Можно применять метод Гаусса для определения ее несовместимости.

Доказать , что прямая x — 1 = y + 2 — 1 = z 3 параллельна плоскости 6 x — 5 y + 1 3 z — 2 3 = 0 .

Для решения данного примера следует переходить от канонического уравнения прямой к виду уравнения двух пересекающихся плоскостей. Запишем это так:

x — 1 = y + 2 — 1 = z 3 ⇔ — 1 · x = — 1 · ( y + 2 ) 3 · x = — 1 · z 3 · ( y + 2 ) = — 1 · z ⇔ x — y — 2 = 0 3 x + z = 0

Чтобы доказать параллельность заданной прямой x — y — 2 = 0 3 x + z = 0 с плоскостью 6 x — 5 y + 1 3 z — 2 3 = 0 , необходимо уравнения преобразовать в систему уравнений x — y — 2 = 0 3 x + z = 0 6 x — 5 y + 1 3 z — 2 3 = 0 .

Видим, что она не решаема, значит прибегнем к методу Гаусса.

Расписав уравнения, получаем, что 1 — 1 0 2 3 0 1 0 6 — 5 1 3 2 3

1 — 1 0 2 0 3 1 — 6 0 1 1 3 — 11 1 3

1 — 1 0 2 0 3 1 — 6 0 0 0 — 9 1 3 .

Отсюда делаем вывод, что система уравнений является несовместной, так как прямая и плоскость не пересекаются, то есть не имеют общих точек.

Делаем вывод, что прямая x — 1 = y + 2 — 1 = z 3 и плоскость 6 x — 5 y + 1 3 z — 2 3 = 0 параллельны, так как было выполнено необходимое и достаточное условие для параллельности плоскости с заданной прямой.

Ответ: прямая и плоскость параллельны.

💥 Видео

Параллельность прямых. Практическая часть. 10 класс.Скачать

Параллельность прямых. Практическая часть.  10 класс.

СТЕРЕОМЕТРИЯ. ВСЕ ЗАДАЧИ НА ПАРАЛЛЕЛЬНОСТЬСкачать

СТЕРЕОМЕТРИЯ. ВСЕ ЗАДАЧИ НА ПАРАЛЛЕЛЬНОСТЬ

Параллельные, пересекающиеся и скрещивающиеся прямые | МатематикаСкачать

Параллельные, пересекающиеся и скрещивающиеся прямые | Математика

10 класс, 7 урок, Скрещивающиеся прямыеСкачать

10 класс, 7 урок, Скрещивающиеся прямые

10 класс, 4 урок, Параллельные прямые в пространствеСкачать

10 класс, 4 урок, Параллельные прямые в пространстве
Поделиться или сохранить к себе: