Три теоремы о разложении вектора

Лекция по математике на тему «Разложение вектора по трем некомпланарным векторам»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Видео:Доказательство теоремы о разложении вектора (геометрия 9 класс)Скачать

Доказательство теоремы о разложении вектора (геометрия 9 класс)

«Снятие эмоционального напряжения
у детей и подростков с помощью арт-практик
и психологических упражнений»

Сертификат и скидка на обучение каждому участнику

Три теоремы о разложении вектора

Лекция по теме «Разложение вектора по трем некомпланарным векторам»

Если вектор представлен в виде Три теоремы о разложении вектораТри теоремы о разложении вектора

где x , y , и z — некоторые числа, то говорят, что вектор Три теоремы о разложении вектора Три теоремы о разложении вектораразложен по векторам Три теоремы о разложении вектора Три теоремы о разложении вектора, Три теоремы о разложении вектора Три теоремы о разложении вектораи Три теоремы о разложении вектора Три теоремы о разложении вектора. Числа x , y и z называются коэффициентами разложения.

Если Три теоремы о разложении вектораТри теоремы о разложении вектора

где x , y , и z — некоторые числа, то вектор Три теоремы о разложении вектора Три теоремы о разложении вектораразложен по векторам Три теоремы о разложении вектора Три теоремы о разложении вектора, Три теоремы о разложении вектора Три теоремы о разложении вектораи Три теоремы о разложении вектора Три теоремы о разложении вектораЧисла x , y и z –

Докажем теорему о разложении вектора по трем некомпланарным векторам.

Любой вектор можно разложить по трем данным некомпланарным векторам, причем коэффициенты разложения определяются единственным образом.

Теорема о разложении вектора по трем некомпланарным векторам.

Любой вектор можно разложить по трем данным некомпланарным векторам, причем коэффициенты разложения определяются единственным образом.

Пусть Три теоремы о разложении вектора Три теоремы о разложении вектора, Три теоремы о разложении вектора Три теоремы о разложении вектораи Три теоремы о разложении вектора Три теоремы о разложении вектора— данные некомпланарные вектора. Докажем сначала, что любой вектор р можно представить в виде Три теоремы о разложении вектора Три теоремы о разложении вектора. Затем докажем единственность коэффициентов разложения.

Теорема о разложении вектора по трем некомпланарным векторам.

Дано: Три теоремы о разложении вектора Три теоремы о разложении вектора, Три теоремы о разложении вектора Три теоремы о разложении вектораи Три теоремы о разложении вектора Три теоремы о разложении вектора— некомпланарные; вектор Три теоремы о разложении вектораТри теоремы о разложении вектора

Доказать: 1) Три теоремы о разложении вектора Три теоремы о разложении вектора;

2) коэффициенты разложения x , y и z определяются единственным образом.

Доказательство: Пусть Три теоремы о разложении вектора Три теоремы о разложении вектора, Три теоремы о разложении вектора Три теоремы о разложении вектораи Три теоремы о разложении вектора Три теоремы о разложении вектора— данные некомпланарные вектора Три теоремы о разложении вектораТри теоремы о разложении вектора

Отметим произвольную точку О и отложим от нее векторы

Три теоремы о разложении вектора Три теоремы о разложении вектора. Через точку Р проведем прямую параллельную ОС. Р1 точка пересечения прямой с плоскостью АОВ (если Р принадлежит ОС, то в качестве Р1 возьмем точку О). Через Р1 проведем прямую Р1Р2 параллельную ОВ; Р2 точка пересечения этой прямой с ОА (если Р1 принадлежит ОВ то в качестве Р2 возьмем точку О);

2) По правилу многоугольника Три теоремы о разложении вектораТри теоремы о разложении вектора

Заметим, что векторы ОР2 и ОА, Р2Р1 и ОВ. Р1Р и ОС коллинеарны. Значит, существуют такие числа x , y и z , что Три теоремы о разложении вектораТри теоремы о разложении вектора

Три теоремы о разложении вектора Три теоремы о разложении вектора. Получаем, что

Три теоремы о разложении вектора Три теоремы о разложении вектора. Или Три теоремы о разложении вектора Три теоремы о разложении вектора; Существование разложения доказано.

Теорема о разложении вектора по трем некомпланарным векторам.

Рисунок плоскости и векторов выходящих из одной точки.

Три теоремы о разложении вектора

1) Три теоремы о разложении вектора ,

2) Три теоремы о разложении вектора Три теоремы о разложении вектора.

Три теоремы о разложении вектора

Три теоремы о разложении вектора

Три теоремы о разложении вектора Три теоремы о разложении вектора.

Три теоремы о разложении вектора Три теоремы о разложении вектора.

Или Три теоремы о разложении вектора Три теоремы о разложении вектора;

Докажем единственность коэффициентов разложения. Допустим, что имеется ещё одно разложение вектора р

Три теоремы о разложении вектора Три теоремы о разложении вектора;

Вычитая это равенство из Три теоремы о разложении вектора Три теоремы о разложении вектора; получим

Три теоремы о разложении вектора Три теоремы о разложении вектора

Теорема о разложении вектора по трем некомпланарным векторам.

что Три теоремы о разложении вектора Три теоремы о разложении вектора;

Вычитая это равенство из

Три теоремы о разложении вектора Три теоремы о разложении вектора; получим

Три теоремы о разложении вектора Три теоремы о разложении вектора

Это равенство выполняется только тогда, когда

Три теоремы о разложении вектора Три теоремы о разложении вектора, Три теоремы о разложении вектора Три теоремы о разложении вектораТри теоремы о разложении вектора Три теоремы о разложении вектора. Если предположить, например, что Три теоремы о разложении вектора Три теоремы о разложении вектора, то из этого равенства получим Три теоремы о разложении вектора Три теоремы о разложении вектора

Тогда, векторы Три теоремы о разложении вектора Три теоремы о разложении вектора, Три теоремы о разложении вектора Три теоремы о разложении вектораи Три теоремы о разложении вектора Три теоремы о разложении вектора– компланарны. Это противоречит условию теоремы.

Значит, наше предположение неверно, Три теоремы о разложении вектора Три теоремы о разложении вектора, Три теоремы о разложении вектора Три теоремы о разложении вектораТри теоремы о разложении вектора Три теоремы о разложении вектораСледовательно, коэффициенты разложения определяются единственным образом. Теорема доказана.

Три теоремы о разложении вектора Три теоремы о разложении вектора, Три теоремы о разложении вектора Три теоремы о разложении вектораТри теоремы о разложении вектора Три теоремы о разложении вектора.

Если Три теоремы о разложении вектора Три теоремы о разложении вектора,

то Три теоремы о разложении вектора Три теоремы о разложении вектора

Векторы Три теоремы о разложении вектора Три теоремы о разложении вектора, Три теоремы о разложении вектора Три теоремы о разложении вектораи Три теоремы о разложении вектора Три теоремы о разложении вектора– компланарны.

Противоречие условию теоремы, то есть Три теоремы о разложении вектора Три теоремы о разложении вектора, Три теоремы о разложении вектора Три теоремы о разложении вектораТри теоремы о разложении вектора Три теоремы о разложении вектора

Коэффициенты разложения определяются единственным образом.

Разложите вектор BD 1 по векторам BA , ВС и ВВ 1 .

По правилу параллелепипеда вектор ВД1 равен сумме векторов ВА, ВС и ВВ1.

Разложите вектор BD 1 по векторам BA , ВС и ВВ 1 .

Три теоремы о разложении вектора

Три теоремы о разложении вектора

Решим эту же задачу под буквой б. Здесь нужно разложить вектор B 1 D 1 по векторам А 1 A , А 1 В и А 1 D 1 .

По правилу треугольника из треугольника А 1 В 1 D 1 :

Вектор В 1 D 1 равен сумме векторов B 1 A 1 + А 1 D 1 вектор В1 A 1 из А 1 В 1 B равен сумме .В 1 B + BA 1 . Вектор ВВ1 = АА1. Вектор ВА1 = – А1В.

Разложите вектор B 1 D 1 по векторам А 1 A , А 1 В и А 1 D 1

Три теоремы о разложении вектора

Три теоремы о разложении вектора=

Три теоремы о разложении вектора

= Три теоремы о разложении вектора Три теоремы о разложении вектора.

Видео:Теорема о разложении вектораСкачать

Теорема о разложении вектора

Векторное пространство: размерность и базис, разложение вектора по базису

В статье о n -мерных векторах мы пришли к понятию линейного пространства, порождаемого множеством n -мерных векторов. Теперь нам предстоит рассмотреть не менее важные понятия, такие как размерность и базис векторного пространства. Они напрямую связаны с понятием линейно независимой системы векторов, так что дополнительно рекомендуется напомнить себе основы и этой темы.

Введем некоторые определения.

Размерность векторного пространства – число, соответствующее максимальному количеству линейно независимых векторов в этом пространстве.

Базис векторного пространства – совокупность линейно независимых векторов, упорядоченная и в своей численности равная размерности пространства.

Рассмотрим некое пространство n -векторов. Размерность его соответственно равна n . Возьмем систему из n -единичных векторов:

e ( 1 ) = ( 1 , 0 , . . . , 0 ) e ( 2 ) = ( 0 , 1 , . . . , 0 ) e ( n ) = ( 0 , 0 , . . . , 1 )

Используем эти векторы в качестве составляющих матрицы A : она будет являться единичной с размерностью n на n . Ранг этой матрицы равен n . Следовательно, векторная система e ( 1 ) , e ( 2 ) , . . . , e ( n ) является линейно независимой. При этом к системе невозможно добавить ни одного вектора, не нарушив ее линейной независимости.

Так как число векторов в системе равно n , то размерность пространства n -мерных векторов равна n , а единичные векторы e ( 1 ) , e ( 2 ) , . . . , e ( n ) являются базисом указанного пространства.

Из полученного определения сделаем вывод: любая система n -мерных векторов, в которой число векторов меньше n , не является базисом пространства.

Если мы поменяем местами первый и второй вектор, получим систему векторов e ( 2 ) , e ( 1 ) , . . . , e ( n ) . Она также будет являться базисом n -мерного векторного пространства. Составим матрицу, взяв за ее строки векторы полученной системы. Матрица может быть получена из единичной матрицы перестановкой местами первых двух строк, ранг ее будет равен n . Система e ( 2 ) , e ( 1 ) , . . . , e ( n ) линейно независима и является базисом n -мерного векторного пространства.

Переставив местами в исходной системе другие векторы, получим еще один базис.

Мы можем взять линейно независимую систему неединичных векторов, и она также будет представлять собой базис n -мерного векторного пространства.

Векторное пространство с размерностью n имеет столько базисов, сколько существует линейно независимых систем из n -мерных векторов числом n.

Плоскость является двумерным пространством – ее базисом будут два любых неколлинеарных вектора. Базисом трехмерного пространства послужат три любых некомпланарных вектора.

Рассмотрим применение данной теории на конкретных примерах.

Исходные данные: векторы

a = ( 3 , — 2 , 1 ) b = ( 2 , 1 , 2 ) c = ( 3 , — 1 , — 2 )

Необходимо определить, являются ли указанные векторы базисом трехмерного векторного пространства.

Решение

Для решения поставленной задачи исследуем заданную систему векторов на линейную зависимость. Составим матрицу, где строки – координаты векторов. Определим ранг матрицы.

A = 3 2 3 — 2 1 — 1 1 2 — 2 A = 3 — 2 1 2 1 2 3 — 1 — 2 = 3 · 1 · ( — 2 ) + ( — 2 ) · 2 · 3 + 1 · 2 · ( — 1 ) — 1 · 1 · 3 — ( — 2 ) · 2 · ( — 2 ) — 3 · 2 · ( — 1 ) = = — 25 ≠ 0 ⇒ R a n k ( A ) = 3

Следовательно, заданные условием задачи векторы линейно независимы, и их численность равна размерности векторного пространства – они являются базисом векторного пространства.

Ответ: указанные векторы являются базисом векторного пространства.

Исходные данные: векторы

a = ( 3 , — 2 , 1 ) b = ( 2 , 1 , 2 ) c = ( 3 , — 1 , — 2 ) d = ( 0 , 1 , 2 )

Необходимо определить, может ли указанная система векторов являться базисом трехмерного пространства.

Решение

Указанная в условии задачи система векторов является линейно зависимой, т.к. максимальное число линейно независимых векторов равно 3. Таким образом, указанная система векторов не может служить базисом трехмерного векторного пространства. Но стоит отметить, что подсистема исходной системы a = ( 3 , — 2 , 1 ) , b = ( 2 , 1 , 2 ) , c = ( 3 , — 1 , — 2 ) является базисом.

Ответ: указанная система векторов не является базисом.

Исходные данные: векторы

a = ( 1 , 2 , 3 , 3 ) b = ( 2 , 5 , 6 , 8 ) c = ( 1 , 3 , 2 , 4 ) d = ( 2 , 5 , 4 , 7 )

Могут ли они являться базисом четырехмерного пространства?

Решение

Cоставим матрицу, используя в качестве строк координаты заданных векторов

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

По методу Гаусса определим ранг матрицы:

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

1 2 3 3 0 1 0 2 0 1 — 1 1 0 1 — 2 1

1 2 3 3 0 1 0 2 0 0 — 1 — 1 0 0 — 2 — 1

1 2 3 3 0 1 0 2 0 0 — 1 — 1 0 0 0 1 ⇒ ⇒ R a n k ( A ) = 4

Следовательно, система заданных векторов линейно независима и их численность равна размерности векторного пространства – они являются базисом четырехмерного векторного пространства.

Ответ: заданные векторы являются базисом четырехмерного пространства.

Исходные данные: векторы

a ( 1 ) = ( 1 , 2 , — 1 , — 2 ) a ( 2 ) = ( 0 , 2 , 1 , — 3 ) a ( 3 ) = ( 1 , 0 , 0 , 5 )

Составляют ли они базис пространства размерностью 4?

Решение

Исходная система векторов линейно независима, но численность векторов в ней недостаточна, чтобы стать базисом четырехмерного пространства.

Ответ: нет, не составляют.

Видео:10 класс, 45 урок, Разложение вектора по трем некомпланарным векторамСкачать

10 класс, 45 урок, Разложение вектора по трем некомпланарным векторам

Разложение вектора по базису

Примем, что произвольные векторы e ( 1 ) , e ( 2 ) , . . . , e ( n ) являются базисом векторного n-мерного пространства. Добавим к ним некий n -мерный вектор x → : полученная система векторов станет линейно зависимой. Свойства линейной зависимости гласят, что хотя бы один из векторов такой системы может линейно выражаться через остальные. Переформулируя это утверждение, можно говорить о том, что хотя бы один из векторов линейно зависимой системы может раскладываться по остальным векторам.

Таким образом, мы пришли к формулировке важнейшей теоремы:

Любой вектор n -мерного векторного пространства единственным образом раскладывается по базису.

Докажем эту теорему:

зададим базис n -мерного векторного пространства — e ( 1 ) , e ( 2 ) , . . . , e ( n ) . Сделаем систему линейно зависимой, добавив к ней n -мерный вектор x → . Этот вектор может быть линейно выражен через исходные векторы e :

x = x 1 · e ( 1 ) + x 2 · e ( 2 ) + . . . + x n · e ( n ) , где x 1 , x 2 , . . . , x n — некоторые числа.

Теперь докажем, что такое разложение является единственным. Предположим, что это не так и существует еще одно подобное разложение:

Отнимем от левой и правой частей этого равенства соответственно левую и правую части равенства x = x 1 · e ( 1 ) + x 2 · e ( 2 ) + . . . + x n · e ( n ) . Получим:

1 — x 1 ) · e ( 1 ) + ( x

2 — x 2 ) · e ( 2 ) + . . . ( x

Система базисных векторов e ( 1 ) , e ( 2 ) , . . . , e ( n ) линейно независима; по определению линейной независимости системы векторов равенство выше возможно только тогда, когда все коэффициенты ( x

2 — x 2 ) , . . . , ( x

n — x n ) будут равны нулю. Из чего справедливым будет: x 1 = x

n . И это доказывает единственный вариант разложения вектора по базису.

При этом коэффициенты x 1 , x 2 , . . . , x n называются координатами вектора x → в базисе e ( 1 ) , e ( 2 ) , . . . , e ( n ) .

Доказанная теория делает понятным выражение «задан n -мерный вектор x = ( x 1 , x 2 , . . . , x n ) »: рассматривается вектор x → n -мерного векторного пространства, и его координаты заданы в некотором базисе. При этом также понятно, что этот же вектор в другом базисе n -мерного пространства будет иметь другие координаты.

Рассмотрим следующий пример: допустим, что в некотором базисе n -мерного векторного пространства задана система из n линейно независимых векторов

e ( 1 ) = ( e 1 ( 1 ) , e 2 ( 1 ) , . . . , e n ( 1 ) ) e ( 2 ) = ( e 1 ( 2 ) , e 2 ( 2 ) , . . . , e n ( 2 ) ) ⋮ e ( n ) = ( e 1 ( n ) , e 2 ( n ) , . . . , e n ( n ) )

а также задан вектор x = ( x 1 , x 2 , . . . , x n ) .

Векторы e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) в этом случае также являются базисом этого векторного пространства.

Предположим, что необходимо определить координаты вектора x → в базисе e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) , обозначаемые как x

Вектор x → будет представлен следующим образом:

2 · e ( 2 ) + . . . + x

Запишем это выражение в координатной форме:

( x 1 , x 2 , . . . , x n ) = x

1 · ( e ( 1 ) 1 , e ( 1 ) 2 , . . . , e ( 1 ) n ) + x

2 · ( e ( 2 ) 1 , e ( 2 ) 2 , . . . , e ( 2 ) n ) + . . . + + x

n · ( e ( n ) 1 , e ( n ) 2 , . . . , e ( n ) n ) = = ( x

2 e 1 ( 2 ) + . . . + x

2 e 2 ( 2 ) + + . . . + x

n e 2 ( n ) , . . . , x

2 e n ( 2 ) + . . . + x

Полученное равенство равносильно системе из n линейных алгебраических выражений с n неизвестными линейными переменными x

n e 2 n ⋮ x n = x

Матрица этой системы будет иметь следующий вид:

e 1 ( 1 ) e 1 ( 2 ) ⋯ e 1 ( n ) e 2 ( 1 ) e 2 ( 2 ) ⋯ e 2 ( n ) ⋮ ⋮ ⋮ ⋮ e n ( 1 ) e n ( 2 ) ⋯ e n ( n )

Пусть это будет матрица A , и ее столбцы – векторы линейно независимой системы векторов e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) . Ранг матрицы – n , и ее определитель отличен от нуля. Это свидетельствует о том, что система уравнений имеет единственное решение, определяемое любым удобным способом: к примеру, методом Крамера или матричным методом. Таким образом мы сможем определить координаты x

n вектора x → в базисе e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) .

Применим рассмотренную теорию на конкретном примере.

Исходные данные: в базисе трехмерного пространства заданы векторы

e ( 1 ) = ( 1 , — 1 , 1 ) e ( 2 ) = ( 3 , 2 , — 5 ) e ( 3 ) = ( 2 , 1 , — 3 ) x = ( 6 , 2 , — 7 )

Необходимо подтвердить факт, что система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) также служит базисом заданного пространства, а также определить координаты вектора х в заданном базисе.

Решение

Система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) будет являться базисом трехмерного пространства, если она линейно независима. Выясним эту возможность, определив ранг матрицы A , строки которой – заданные векторы e ( 1 ) , e ( 2 ) , e ( 3 ) .

Используем метод Гаусса:

A = 1 — 1 1 3 2 — 5 2 1 — 3

1 — 1 1 0 5 — 8 0 3 — 5

1 — 1 1 0 5 — 8 0 0 — 1 5

R a n k ( A ) = 3 . Таким образом, система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) линейно независима и является базисом.

Пусть в базисе вектор x → имеет координаты x

3 . Связь этих координат определяется уравнением:

3 e 1 ( 3 ) x 2 = x

3 e 2 ( 3 ) x 3 = x

Применим значения согласно условиям задачи:

Решим систему уравнений методом Крамера:

∆ = 1 3 2 — 1 2 1 1 — 5 — 3 = — 1 ∆ x

1 = 6 3 2 2 2 1 — 7 — 5 — 3 = — 1 , x

1 ∆ = — 1 — 1 = 1 ∆ x

2 = 1 6 2 — 1 2 1 1 — 7 — 3 = — 1 , x

2 ∆ = — 1 — 1 = 1 ∆ x

3 = 1 3 6 — 1 2 2 1 — 5 — 7 = — 1 , x

Так, вектор x → в базисе e ( 1 ) , e ( 2 ) , e ( 3 ) имеет координаты x

Ответ: x = ( 1 , 1 , 1 )

Видео:89. Разложение вектора по двум неколлинеарным векторамСкачать

89. Разложение вектора по двум неколлинеарным векторам

Связь между базисами

Предположим, что в некотором базисе n-мерного векторного пространства даны две линейно независимые системы векторов:

c ( 1 ) = ( c 1 ( 1 ) , c 2 ( 1 ) , . . . , c n ( 1 ) ) c ( 2 ) = ( c 1 ( 2 ) , c 2 ( 2 ) , . . . , c n ( 2 ) ) ⋮ c ( n ) = ( c 1 ( n ) , e 2 ( n ) , . . . , c n ( n ) )

e ( 1 ) = ( e 1 ( 1 ) , e 2 ( 1 ) , . . . , e n ( 1 ) ) e ( 2 ) = ( e 1 ( 2 ) , e 2 ( 2 ) , . . . , e n ( 2 ) ) ⋮ e ( n ) = ( e 1 ( n ) , e 2 ( n ) , . . . , e n ( n ) )

Указанные системы являются также базисами заданного пространства.

n ( 1 ) — координаты вектора c ( 1 ) в базисе e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) , тогда связь координат будет задаваться системой линейных уравнений:

1 ( 1 ) e 1 ( 1 ) + c

2 ( 1 ) e 1 ( 2 ) + . . . + c

n ( 1 ) e 1 ( n ) с 2 ( 1 ) = c

1 ( 1 ) e 2 ( 1 ) + c

2 ( 1 ) e 2 ( 2 ) + . . . + c

n ( 1 ) e 2 ( n ) ⋮ с n ( 1 ) = c

1 ( 1 ) e n ( 1 ) + c

2 ( 1 ) e n ( 2 ) + . . . + c

В виде матрицы систему можно отобразить так:

( c 1 ( 1 ) , c 2 ( 1 ) , . . . , c n ( 1 ) ) = ( c

n ( 1 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

Сделаем по аналогии такую же запись для вектора c ( 2 ) :

( c 1 ( 2 ) , c 2 ( 2 ) , . . . , c n ( 2 ) ) = ( c

n ( 2 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

И, далее действуя по тому же принципу, получаем:

( c 1 ( n ) , c 2 ( n ) , . . . , c n ( n ) ) = ( c

n ( n ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

Матричные равенства объединим в одно выражение:

c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n ) = c

n ( n ) · e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n )

Оно и будет определять связь векторов двух различных базисов.

Используя тот же принцип, возможно выразить все векторы базиса e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) через базис c ( 1 ) , c ( 2 ) , . . . , c ( n ) :

e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n ) = e

n ( n ) · c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n )

Дадим следующие определения:

n ( n ) является матрицей перехода от базиса e ( 1 ) , e ( 2 ) , . . . , e ( 3 )

к базису c ( 1 ) , c ( 2 ) , . . . , c ( n ) .

n ( n ) является матрицей перехода от базиса c ( 1 ) , c ( 2 ) , . . . , c ( n )

к базису e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) .

Видео:РАЗЛОЖЕНИЕ ВЕКТОРА ПО ДВУМ неколлинеарным ВЕКТОРАМ 9 классСкачать

РАЗЛОЖЕНИЕ ВЕКТОРА ПО ДВУМ неколлинеарным ВЕКТОРАМ 9 класс

Урок «Разложение вектора по трём некомпланарным векторам»

Краткое описание документа:

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Если вектор представлен в виде

где x, y, и z — некоторые числа, то говорят, что вектор разложен по векторам , и . Числа x, y и z называются коэффициентами разложения.

Три теоремы о разложении вектора

Докажем теорему о разложении вектора по трем некомпланарным векторам.

Любой вектор можно разложить по трем данным некомпланарным векторам, причем коэффициенты разложения определяются единственным образом.

Пусть , и — данные некомпланарные вектора. Докажем сначала, что любой вектор р можно представить в виде . Затем докажем единственность коэффициентов разложения.

Доказательство: Пусть , и — данные некомпланарные вектора

Отметим произвольную точку О и отложим от нее векторы. Через точку Р проведем прямую параллельную ОС. Р1 точка пересечения прямой с плоскостью АОВ (если Р принадлежит ОС, то в качестве Р1 возьмем точку О). Через Р1 проведем прямую Р1Р2 параллельную ОВ; Р2 точка пересечения этой прямой с ОА (если Р1 принадлежит ОВ то в качестве Р2 возьмем точку О);

Три теоремы о разложении вектора

2) По правилу многоугольника

Заметим, что векторы ОР2 и ОА, Р2Р1 и ОВ. Р1Р и ОС коллинеарны. Значит, существуют такие числа x, y и z, что. Получаем, что

Существование разложения доказано.

Докажем единственность коэффициентов разложения. Допустим, что имеется ещё одно разложение вектора р;

Три теоремы о разложении вектора

Вычитая это равенство из ; получим

Это равенство выполняется только тогда, когда. Если предположить, например, что , то из этого равенства получим

Тогда, векторы , и – компланарны. Это противоречит условию теоремы.

Значит, наше предположение неверно, , Следовательно, коэффициенты разложения определяются единственным образом. Теорема доказана.

Дан параллелепипед АВСDA1B1C1D1.

Разложите вектор BD1 по векторам BA, ВС и ВВ1.

По правилу параллелепипеда вектор ВД1 равен сумме векторов ВА, ВС и ВВ1.

Три теоремы о разложении вектора

Решим эту же задачу под буквой б. Здесь нужно разложить вектор B1D1 по векторам А1A, А1В и А1D1.

По правилу треугольника из треугольника А1В1D1:

Вектор В1D1 равен сумме векторов B1A1+ А1D1 вектор В1A1 из А1В1B равен сумме .В1B + BA1 . Вектор ВВ1 = АА1. Вектор ВА1 = – А1В.

Получим: Вектор В1D1 = (A1A – A1B)+ А1D1 = A1A – A1B+ А1D1 .

🎥 Видео

Разложение вектора по базису. 9 класс.Скачать

Разложение вектора по базису. 9 класс.

Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

9 класс, 1 урок, Разложение вектора по двум неколлинеарным векторамСкачать

9 класс, 1 урок, Разложение вектора по двум неколлинеарным векторам

Разложение вектора по трем некомпланарным векторамСкачать

Разложение вектора по трем некомпланарным векторам

Коллинеарность и разложение векторов. Урок 3. mp4Скачать

Коллинеарность и разложение векторов. Урок 3. mp4

Геометрия 9 класс (Урок№7 - Разложение вектора по двум неколлинеарным векторам. Координаты вектора.)Скачать

Геометрия 9 класс (Урок№7 - Разложение вектора по двум неколлинеарным векторам. Координаты вектора.)

Разложение вектора по двум неколлинеарным векторам | Геометрия 7-9 класс #85 | ИнфоурокСкачать

Разложение  вектора по двум неколлинеарным векторам | Геометрия 7-9 класс #85 | Инфоурок

Разложение вектора по векторам (базису). Аналитическая геометрия-1Скачать

Разложение вектора по векторам (базису). Аналитическая геометрия-1

#вектор Разложение вектора по ортам. Направляющие косинусыСкачать

#вектор Разложение вектора по ортам.  Направляющие косинусы

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Разложение вектора на неколлинеарные вектора.Скачать

Разложение вектора на неколлинеарные вектора.

Геометрия 9 класс Атанасян Ч.5 п.86-87Скачать

Геометрия 9 класс Атанасян  Ч.5 п.86-87

Базис. Разложение вектора по базису.Скачать

Базис. Разложение вектора по базису.

Разложение вектора по координатным осям. Единичный и координатные векторы. Геометрия 8-9 классСкачать

Разложение вектора по координатным осям. Единичный и координатные векторы. Геометрия 8-9 класс

Разложение вектора по 2 неколлинеарным векторам - bezbotvyСкачать

Разложение вектора по 2 неколлинеарным векторам - bezbotvy
Поделиться или сохранить к себе: