- Определения скалярного произведения векторов через угол между ними
- Сложение векторов — решение примеров
- Выполнить сложение и вычитание векторов самостоятельно, а затем посмотреть решение
- Нахождение угла между векторами
- Нахождение угла между векторами
- Векторы. Операции с векторами.
- Векторы. Операции с векторами.
- 🎬 Видео
Видео:9 класс, 14 урок, Теорема косинусовСкачать
Определения скалярного произведения векторов через угол между ними
Сложение векторов по правилу треугольника (суммой векторов и называется вектор , начало которого совпадает с началом вектора , а конец — с концом вектора , при условии, что начало вектора приложено к концу вектора ) даёт возможность упрощать выражение перед вычислением произведений векторов.
Сложение векторов, заданных координатами (при сложении одноимённые координаты складываются) даёт возможность узнать, как расположен относительно начала координат вектор, являющийся суммой слагаемых векторов. Подробно эти две операции разбирались на уроке «Векторы и операции над векторами».
Теперь же нам предстоит узнать, как найти длину вектора, являющегося результатом сложения векторов. Для этого потребуется использовать теорему косинусов. Такую задачу приходится решать, например, когда дорога из пункта A в пункт С — не прямая, а отклоняется от прямой, чтобы пройти ещё через какой-то пункт B, а нужно узнать длину предполагаемой прямой дороги. Кстати, геодезия — одна из тех сфер деятельности, где тригонометрические функции применяются во всех их полноте.
При сложении векторов для нахождения длины суммы векторов используется теорема косинусов. Пусть и — векторы, — угол между ними, а — сумма векторов как результат сложения векторов по правилу треугольника. Тогда верно следующее соотношение:
,
где — угол, смежный с углом . У смежных углов одна сторона общая, а другие стороны лежат на одной прямой (см. рисунок выше).
Поэтому для сложения векторов и определения длины суммы векторов нужно извлечь квадратный корень из каждой части равенства, тогда получится формула длины:
.
В случае вычитания векторов () происходит сложение вектора с вектором , противоположным вектору , то есть имеющим ту же длину, но противоположным по направлению. Углы между и и и между и являются смежными углами, у них, как уже было отмечено, одна сторона общая, а другие стороны лежат на одной прямой. В случае вычитания векторов для нахождения длины разности векторов нужно знать следующее свойство косинусов смежных углов:
косинусы смежных углов равны по абсолютной величине (величине по модулю), но имеют противоположные знаки.
Перейдём к примерам.
Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать
Сложение векторов — решение примеров
Пример 1. Векторы и образуют угол . Их длины: и . Выполнить сложение векторов и найти их сумму . Выполнить вычитание векторов и найти их разность .
Решение. Из элементарной тригонометрии известно, что .
Шаг 1. Выполняем сложение векторов. Находим длину суммы векторов, поставляя в формулу длины косинус угла, смежного с углом между векторами:
Шаг 2. Выполняем вычитание векторов. Находим длину разности векторов, подставляя в формулу косинус «изначального» угла:
Выполнить сложение и вычитание векторов самостоятельно, а затем посмотреть решение
Пример 2. Векторы и образуют угол . Их длины: и . Выполнить сложение векторов и найти их сумму . Выполнить вычитание векторов и найти их разность .
Пример 3. Даны длины векторов и длина их суммы . Найти длину их разности .
Шаг 1. По теореме косинусов составляем уравнение, чтобы найти косинус угла, смежного с углом между векторами и находим его:
Не забываем, что косинус смежного угла получился со знаком минус. Это значит, что косинус «изначального» угла будет со знаком плюс.
Шаг 2. Выполняем вычитание векторов. Находим длину разности векторов, подставляя в формулу косинус «изначального» угла:
Пример 4. Даны длины векторов и длина их разности . Найти длину их суммы .
Шаг 1. По теореме косинусов составляем уравнение, чтобы найти косинус «изначального» угла (задача обратная по отношению к примеру 1) и находим его:
Шаг 2. Меняем знак косинуса и получаем косинус смежного угла между и :
Шаг 3. Выполняем сложение векторов. Находим длину суммы векторов, подставляя в формулу косинус смежного угла:
Пример 5. Векторы и взаимно перпендикулярны, а их длины . Найти длину их суммы и и длину их разности .
Два смежных угла, как нетрудно догадаться из приведённого в начале урока определения, в сумме составляют 180 градусов. Следовательно, смежный с прямым углом (90 градусов) угол — тоже прямой (тоже 90 градусов). Косинус такого угла равен нулю, то же самое относится и к косинусу смежного угла. Поэтому, подставляя это значение в выражения под корнем в формуле длины суммы и разности векторов, получаем нули как последние выражения — произведения под знаком корня. То есть длины суммы и разности данных векторов равны, вычисляем их:
Пример 6. Какому условию должны удовлетворять векторы и , чтобы имели место слелующие соотношения:
1) длина суммы векторов равна длине разности векторов, т. е. ,
2) длина суммы векторов больше длины разности векторов, т. е. ,
3) длина суммы векторов меньше длины разности векторов, т. е. ?
Находим условие для первого соотношения. Для этого решаем следующее уравнение:
То есть, для того, чтобы длина суммы векторов была равна длине их разности, необходимы, чтобы косинус угла между ними и косинус смежного ему угла были равны. Это условие выполняется, когда углы образуют прямой угол.
Находим условие для второго соотношения. Решаем уравнение:
Найденное условие выполняется, когда косинус угла между векторами меньше косинуса смежных углов. То есть, чтобы длина суммы векторов была больше длины разности векторов, необходимо, чтобы углы образовали острый угол (пример 1).
Находим условие для третьего соотношения. Решаем уравнение:
Найденное условие выполняется, когда косинус угла между векторами больше косинуса смежных углов. То есть, чтобы длина суммы векторов была меньше длины разности векторов, необходимо, чтобы углы образовали тупой угол.
Видео:Теорема косинусов #shortsСкачать
Нахождение угла между векторами
Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.
Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →
Углом между векторами a → и b → называется угол между лучами О А и О В .
Полученный угол будем обозначать следующим образом: a → , b → ^
Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.
a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.
Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.
Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.
Видео:Теорема косинусов | ДоказательствоСкачать
Нахождение угла между векторами
Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.
Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .
Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:
cos a → , b → ^ = a → , b → a → · b →
Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.
Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно — 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.
Решение
Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = — 9 3 · 6 = — 1 2 ,
Теперь определим угол между векторами: a → , b → ^ = a r c cos ( — 1 2 ) = 3 π 4
Ответ: cos a → , b → ^ = — 1 2 , a → , b → ^ = 3 π 4
Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.
Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:
cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2
А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2
Исходные данные: векторы a → = ( 2 , 0 , — 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.
Решение
- Для решения задачи можем сразу применить формулу:
cos a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 2 2 + 0 2 + ( — 1 ) 2 · 1 2 + 2 2 + 3 2 = — 1 70 ⇒ a → , b → ^ = a r c cos ( — 1 70 ) = — a r c cos 1 70
- Также можно определить угол по формуле:
cos a → , b → ^ = ( a → , b → ) a → · b → ,
но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( — 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 = — 1 cos a → , b → ^ = a → , b → ^ a → · b → = — 1 5 · 14 = — 1 70 ⇒ a → , b → ^ = — a r c cos 1 70
Ответ: a → , b → ^ = — a r c cos 1 70
Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.
Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , — 1 ) , B ( 3 , 2 ) , C ( 7 , — 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .
Решение
Найдем координаты векторов по координатам заданных точек A C → = ( 7 — 2 , — 2 — ( — 1 ) ) = ( 5 , — 1 ) B C → = ( 7 — 3 , — 2 — 2 ) = ( 4 , — 4 )
Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( — 1 ) · ( — 4 ) 5 2 + ( — 1 ) 2 · 4 2 + ( — 4 ) 2 = 24 26 · 32 = 3 13
Ответ: cos A C → , B C → ^ = 3 13
Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:
A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) ,
b → — a → 2 = a → + b → — 2 · a → · b → · cos ( a → , b → ) ^
и отсюда выведем формулу косинуса угла:
cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 — b → — a → 2 a → · b →
Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.
Хотя указанный способ имеет место быть, все же чаще применяют формулу:
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Векторы. Операции с векторами.
Видео:ТЕОРЕМА СИНУСОВ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Векторы. Операции с векторами.
Математические или физические величины могут быть представлены как скалярными величинами (численным значением), так и векторными величинами (величиной и направлением в пространстве).
Вектор представляет собой направленный отрезок прямой, для которого указано, какая из его граничных точек является началом, а какая — концом. Таким образом, в векторе присутствует две составляющих – это его длина и направление.
Рис.1. Изображение вектора на чертеже.
При работе с векторами часто вводят некоторую декартову систему координат в которой определяют координаты вектора, раскладывая его по базисным векторам:
— для вектора, расположенного в пространстве координат (x,y) и выходящего из начала координат
— для вектора, расположенного в пространстве координат (x,y,z) и выходящего из начала координат
Расстояние между началом и концом вектора называется его длиной, а для обозначения длины вектора (его абсолютной величины) пользуются символом модуля.
Векторы расположенные либо на одной прямой, либо на параллельных прямых называются коллинеарными. Нулевой вектор считается коллинеарным любому вектору. Среди коллинеарных векторов различают одинаково направленные (сонаправленные) и противоположно направленные векторы. Векторы называются компланарными, если они лежат либо на одной плоскости, либо на прямых, параллельных одной и той же плоскости.
1.Длина вектора (модуль вектора)
Длина вектора определяет его скалярное значение и зависит от его координат, но не зависит от его направления. Длина вектора (или модуль вектора) вычисляется через арифметический квадратный корень из суммы квадратов координат (компонент) вектора (используется правило вычисления гипотенузы в прямоугольном треугольнике, где сам вектор становится гипотенузой).
Через координаты модуль вектора вычисляется следующим образом:
— для вектора, расположенного в пространстве координат (x,y) и выходящего из начала координат
— для вектора, расположенного в пространстве координат (x,y,z) и выходящего из начала координат, формула будет аналогична формуле диагонали прямоугольного параллелепипеда, так как вектор в пространстве принимает такое же положение относительно осей координат.
2. Угол между векторами
Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения второго вектора. Угол между векторами определяется с использованием выражения для определения скалярного произведения векторов
Таким образом, косинус угла между векторами равен отношению скалярного произведения к произведению длин или модулей векторов. Данной формулой можно пользоваться в случае, если известны длины векторов и их скалярное произведение, либо векторы заданы координатами в прямоугольной системе координат на плоскости или в пространстве в виде: и .
Если векторы A и B заданы в трехмерном пространстве и координаты каждого из них заданы в виде: и , то угол между векторами определяется по следующему выражению:
Следует отметить, что угол между векторами и можно также определить применяя теорему косинусов для треугольника: квадрат любой стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
где AB, OA, OB – соответствующая сторона треугольника.
Рис.2. Теорема косинусов для треугольника
Применительно к векторным исчислением данная формула перепишется следующим образом:
Таким образом, угол между векторами и определяется по следующему выражению:
где и — модуль (длина) вектора, а — модуль (длина) вектора, который определяется из разности двух векторов. Неизвестные входящие в уравнение определяются по координатам векторов и .
3.Сложение векторов
Сложение двух векторов и (сумма двух векторов) — это операция вычисления вектора , все элементы которого равны попарной сумме соответствующих элементов векторов и . В случае если вектора заданы в прямоугольной системе координат сумму векторов и можно найти по следующей формуле:
В графическом виде, сложение двух свободных векторов можно осуществлять как по правилу треугольника, так и по правилу параллелограмма.
Рис.3. Сложение двух векторов
Сложение двух скользящих векторов определено лишь в случае, когда прямые, на которых они расположены, пересекаются. Сложение двух фиксированных векторов определено лишь в случае, когда они имеют общее начало.
Правило треугольника.
Для сложения двух векторов и по правилу треугольника оба эти вектора переносятся параллельно самим себе так, чтобы начало одного из них совпадало с концом другого. Тогда вектор суммы задаётся третьей стороной образовавшегося треугольника, причём его начало совпадает с началом первого вектора, а конец с концом второго вектора.
Модуль (длину) вектора суммы определяют по теореме косинусов:
где — угол между векторами, когда начало одного совпадает с концом другого.
Правило параллелограмма.
Для сложения двух векторов и по правилу параллелограмма оба эти вектора переносятся параллельно самим себе так, чтобы их начала совпадали. Тогда вектор суммы задаётся диагональю построенного на них параллелограмма, исходящей из их общего начала.
Модуль (длину) вектора суммы определяют по теореме косинусов:
где — угол между векторами выходящими из одной точки.
Как видно, в зависимости от того какой угол выбирается, изменяется знак перед косинусом угла в формуле для определения модуля (длины) вектора суммы.
4.Разность векторов
Разность векторов и (вычитание векторов) — это операция вычисления вектора , все элементы которого равны попарной разности соответствующих элементов векторов и . В случае если вектора заданы в прямоугольной системе координат разность векторов и можно найти по следующей формуле:
В графическом виде, разностью векторов и называется сумма вектора и вектора противоположного вектору , т.е.
Рис.4. Разность двух свободных векторов
Разность двух свободных векторов в графическом виде может быть определена как по правилу треугольника, так и по правилу параллелограмма. Модуль (длина) вектора разности определяется по теореме косинусов. В зависимости от используемого угла в формуле изменяется знак перед косинусом (рассматривалось ранее).
5.Скалярное произведение векторов
Скалярным произведением двух векторов называется действительное число, равное произведению длин умножаемых векторов на косинус угла между ними. Скалярное произведение векторов и обозначается одним из следующих обозначений или или и определяется по формуле:
где— длины векторов и соответственно, а — косинус угла между векторами.
Рис.5. Скалярное произведение двух векторов
Скалярное произведение также можно вычислить через координаты векторов в прямоугольной системе координат на плоскости или в пространстве.
Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов и .
Таким образом, для векторов и на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет следующий вид:
Для трехмерного пространства формула для вычисления скалярного произведения векторов и имеет следующий вид:
Свойства скалярного произведения.
1.Свойство коммутативности скалярного произведения
2.Свойство дистрибутивности скалярного произведения
3.Сочетательное свойство скалярного произведения (ассоциативность)
где — произвольное действительное число.
Следует отметить, что в случае:
— если скалярное произведение положительно, следовательно, угол между векторами – острый (менее 90 градусов);
— если скалярное произведение отрицательно, следовательно, угол между векторами – тупой (больше 90 градусов);
— если скалярное произведение равно 0, следовательно, вектора являются ортогональными (которые лежат перпендикулярно друг к другу);
— если скалярное произведение равно произведению длин векторов, следовательно, данные векторы коллинеарные между собой (параллельные).
6.Векторное произведение векторов
Векторным произведением двух векторов и называется вектор для которого выполняются следующие условия:
1. вектор ортогонален (перпендикулярен) плоскости векторов и ;
2. направление вектора определяется по правилу правой руки (вектор направлен так, что из конца вектора кратчайший поворот от вектора к вектору виден происходящим против часовой стрелки);
Рис.6. Нахождение направления векторного произведения с помощью правила правой руки.
3. длина вектора равняется площади параллелограмма, образованного векторами, и может быть определена из выражения, равного произведению длин умножаемых векторов на синус угла между ними.
Векторное произведение векторов и обозначается следующим образом (или ), а длина (модуль) векторного произведения определяется по формуле:
где— длины векторов и соответственно, а — синус угла между векторами.
Векторное произведение векторов отличается от скалярного произведения тем, что оно представляет собой не просто число, а вектор, имеющий свое собственное направление (направление обуславливает трехмерность системы). Таким образом, векторное произведение векторов по определению возможно только в трехмерном пространстве, где у каждого вектора указаны три координаты (i,j,k). Векторное произведение не обладает свойствами коммутативности в отличие от скалярного произведения векторов.
Рис.7. Векторное произведение двух векторов
Векторное произведение также можно вычислить через координаты векторов в прямоугольной системе координат в пространстве.
Свойства векторного произведения.
1.Свойство антикоммутативности векторного произведения
2.Свойство дистрибутивности векторного произведения
3.Сочетательное свойство векторного произведения (ассоциативность)
где — произвольное действительное число.
Следует отметить, что в случае:
— если векторное произведение равно 0, следовательно, вектора являются коллинеарными (вектора параллельны друг другу);
— если векторное произведение равно произведению длин векторов, следовательно, вектора являются ортогональными (которые лежат перпендикулярно друг к другу).
Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.
🎬 Видео
Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
ТЕОРЕМА КОСИНУСОВ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Теорема синусов и теорема косинусовСкачать
Теорема косинусов для треугольникаСкачать
9 класс, 13 урок, Теорема синусовСкачать
Скалярное произведение векторов. 9 класс.Скачать
Угол между векторами | МатематикаСкачать
ТЕОРЕМА КОСИНУСОВ. Задачи на произвольные треугольникиСкачать
Теоремы синусов и косинусов | Ботай со мной #029 | Борис ТрушинСкачать
Теорема косинусов. Урок геометрии 9 класс.Скачать
Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать
Геометрия. 9 класс. Теорема косинусов /12.01.2021/Скачать
Теорема синусов – просто и красиво // Vital MathСкачать
Геометрия 9 класс (Урок№16 - Теорема косинусов.)Скачать