Теорема 1 От любой точки ( K ) можно отложить вектор единственный ( overrightarrow ) .
Существование: Имеем два следующих случая:
Здесь получаем, что искомый нами вектор совпадает с вектором ( overrightarrow ) .
Из данного выше построения сразу же будет следовать единственность данного вектора.
- Сумма векторов. Сложение векторов. Правило треугольника
- Разность векторов. Вычитание векторов
- Умножение вектора на число
- Правило параллелепипеда. Разложение вектора
- Правило параллелепипеда
- Разложение вектора по двум неколлинеарным векторам
- Сложение и вычитание векторов
- Сложение векторов по правилу параллелограмма
- Сложение векторов по правилу треугольника
- Правило параллелепипеда
- Сложение противоположных векторов
- Свойство переместительности ( переместительный закон )
- Сочетательное свойство ( сочетательный закон )
- Вычитание векторов
- 🎬 Видео
Видео:10 класс, 44 урок, Правило параллелепипедаСкачать
Сумма векторов. Сложение векторов. Правило треугольника
Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.
Суммой нескольких векторов ( vec ) , ( vec ) , ( vec,;ldots ) называется вектор ( vec ) , получающийся в результате последовательного сложения данных векторов.
Такая операция выполняется по правилу многоугольника.
Сумма векторов в координатах
При сложении двух векторов соответствующие координаты складываются.
( vec + vec = left( <+ , + , + > right) )
Отметим несколько свойств сложения двух векторов:
Для произвольного вектора ( overrightarrow ) выполняется равенство
Для произвольных точек ( A, B и C ) справедливо следующее равенство
Замечание Таким способом также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.
Видео:Сложение векторов. Правило параллелограмма. 9 класс.Скачать
Разность векторов. Вычитание векторов
Разность двух одинаковых векторов равна нулевому вектору :
( vec — vec = vec )
Длина нулевого вектора равна нулю:
( left| vec right| = 0 )
Разность векторов в координатах
При вычитании двух векторов соответствующие координаты также вычитаются.
( vec — vec = left( <- , — , — > right) )
Видео:Правило параллелепипеда для векторовСкачать
Умножение вектора на число
Пусть нам дан вектор ( overrightarrow ) и действительное число ( k ) .
Определение Произведением вектора ( overrightarrow ) на действительное число ( k ) называется вектор ( overrightarrow ) удовлетворяющий следующим условиям:
Длина вектора ( overrightarrow ) равна ( left|overrightarrowright|=left|kright||overrightarrow| ) ;
Векторы ( overrightarrow ) и ( overrightarrow ) сонаправлены, при ( kge 0 ) и противоположно направлены, если ( kle 0 )
Обозначение: ( overrightarrow=koverrightarrow ) .
Видео:Вычитание векторов. 9 класс.Скачать
Правило параллелепипеда. Разложение вектора
Вы будете перенаправлены на Автор24
Видео:Сложение векторов. 9 класс.Скачать
Правило параллелепипеда
Для правила сложения трех векторов рассмотрим следующую задачу.
Дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Доказать, что $overrightarrow+overrightarrow+overrightarrow=overrightarrow$
Доказательство.
Воспользуемся свойством правила треугольника сложения двух векторов $overrightarrow+overrightarrow=overrightarrow$, получим:
Так как $overrightarrow=overrightarrow, overrightarrow=overrightarrow$
Из этой задачи получаем следующее правило для нахождения сложения трех векторов. Чтобы найти сумму трех векторов $overrightarrow,overrightarrow и overrightarrow$ нужно от произвольной точки $O$ отложить векторы $overrightarrow=overrightarrow$, $overrightarrow=overrightarrow$ и $overrightarrow=overrightarrow$ и построим параллелепипед на этих векторах. Тогда вектор диагонали $overrightarrow$ и будет суммой этих трех векторов. Это правило называется правилом параллелепипеда для сложения трех векторов.
Видео:44. Правило параллелепипедаСкачать
Разложение вектора по двум неколлинеарным векторам
Вспомним сначала, какие векторы называются компланарными.
Два вектора, которые параллельны одной плоскости называются компланарными.
Произвольный вектор $overrightarrow
$ можно разложить по трем некомпланарным векторам $overrightarrow, overrightarrow$ и $overrightarrow$ с единственными коэффициентами разложения.
Математически это можно записать следующим образом
Доказательство.
Существование: Пусть нам даны три некомпланарных вектора $overrightarrow, overrightarrow$ и $overrightarrow$. Выберем произвольную точку $O$ и построим следующие векторы:
[overrightarrow=overrightarrow, overrightarrow=overrightarrow, overrightarrow=overrightarrow и overrightarrow
=overrightarrow]
Рассмотрим следующий рисунок:
Произведем следующие дополнительные построения. Проведем через точку $P$ прямую, которая будет параллельна вектору $overrightarrow$. Пусть эта прямая пересекает плоскость $OAB$ в точке $P_1$. Далее, проведем через точку $P_1$ прямую, которая будет параллельна вектору $overrightarrow$. Пусть эта прямая пересекает прямую $OA$ в точке $P_2$ (смотри рисунок выше).
Воспользуемся свойством правила треугольника сложения двух векторов $overrightarrow+overrightarrow=overrightarrow$, получим:
Так как векторы $overrightarrow$ и $overrightarrow$ коллинеарны, то
Так как векторы $overrightarrow
$ и $overrightarrow$ коллинеарны, то
Так как векторы $overrightarrow
$ и $overrightarrow$ коллинеарны, то
Тогда, получаем, что
Существование разложения доказано.
Единственность: Предположим противное. Пусть существует еще одно разложение вектора $overrightarrow
$ по векторам $overrightarrow, overrightarrow$ и $overrightarrow$:
Вычтем эти разложения друг из друга
Из этого получаем
Теорема доказана.
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Сложение и вычитание векторов
Видео:Сложение и вычитание векторов. Практическая часть. 11 класс.Скачать
Сложение векторов по правилу параллелограмма
Правило параллелограмма
Если слагаемые a и b не коллинеарны, то
c=a+b
Видео:8 класс, 43 урок, Сумма двух векторовСкачать
Сложение векторов по правилу треугольника
Правило треугольника
Суммой векторов a (на рисунке зелёный вектор ) и b (на рисунке синий вектор ) называется третий вектор c (на рисунке красный вектор ) , получаемый следующее построение:
Нельзя смешивать понятие «сумма отрезков» с понятием «сумма векторов».
Видео:ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать
Правило параллелепипеда
Если три вектора a, b, c после приведения к общему началу не лежат в одной плоскости , то их сумма равна диагонали параллелепипеда
d=a+b+c
Видео:10 класс, 40 урок, Сложение и вычитание векторовСкачать
Сложение противоположных векторов
Сумма противоположных векторов равна нуль-вектору, т.е.
a+(-a)=0
Видео:Сумма и разность векторов. Урок 2. Геометрия 9 классСкачать
Свойство переместительности ( переместительный закон )
От перестановки слагаемых сумма векторов не меняется.
с=a+b= b+a
Видео:8 класс, 44 урок, Законы сложения векторов. Правило параллелограммаСкачать
Сочетательное свойство ( сочетательный закон )
Слагаемые векторы можно группировать как угодно.
a+(b+c+d) = a+b+c+d
Видео:СУММА ВЕКТОРОВ правило треугольникаСкачать
Вычитание векторов
Вычесть вектор а (вычитаемое) из вектора b (уменьшаемое) значит найти новый вектор x (разность), который в сумме с вектором а даёт вектор b.
Разность векторов обозначается: a-b
Вычитание есть действие обратное сложению (сложение векторов).
Вычитание векторов показаны на рисунках ниже:
Примечание
Модуль разности может быть меньше модуля «уменьшаемого», но может быть и больше или равен ему. Эти случаи показаны на рисунке выше.
🎬 Видео
Сложение и вычитание векторовСкачать
сложение ВЕКТОРОВ вычитание ВЕКТОРОВ 9 класс геометрия АтанасянСкачать
1. Векторы и параллелограмм задачи №1Скачать
Урок 4. Векторы. Сложение векторов. Правило треугольника. Правило параллелограмма.Скачать
10 класс, 41 урок, Сумма нескольких векторовСкачать
Геометрия 9 класс (Урок№2 - Сумма двух векторов. Законы сложения векторов.)Скачать