Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 см

Сумма двух противолежащих сторон описанного около окружности четырёхугольника равна 18 см. Найдите периметр данного четырёхугольника.

Видео:№698. Сумма двух противоположных сторон описанного четырехугольника равна 12 см, а радиусСкачать

№698. Сумма двух противоположных сторон описанного четырехугольника равна 12 см, а радиус

Ваш ответ

Видео:№695. Сумма двух противоположных сторон описанного четырехугольника равна 15 см. НайдитеСкачать

№695. Сумма двух противоположных сторон описанного четырехугольника равна 15 см. Найдите

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,727
  • разное 16,824

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:№699. Сумма двух противоположных сторон описанного четырехугольника равна 10 см, а его площадьСкачать

№699. Сумма двух противоположных сторон описанного четырехугольника равна 10 см, а его площадь

695 Сумма двух противоположных сторон описанного четырехугольника равна 15 см. Найдите периметр этого четырехугольника.

Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 см

Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 см

Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 см

Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 см Решебник по геометрии за 8 класс (Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина, 2005 год),
задача №695
к главе «Глава VIII. Окружность. §4. Вписанная и описанная окружности».

Выделите её мышкой и нажмите CTRL + ENTER

Большое спасибо всем, кто помогает делать сайт лучше! =)

Нажмите на значок глаза возле рекламного блока, и блоки станут менее заметны. Работает до перезагрузки страницы.

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

§ 4. Вписанная и описанная окружности

Вписанная окружность

Если все стороны многоугольника касаются окружности, то окружность называется вписанной в многоугольник, а многоугольник — описанным около этой окружности. На рисунке 231 четырёхугольник EFMN описан около окружности с центром О, а четырёхугольник DKMN не является описанным около этой окружности, так как сторона DK не касается окружности.

Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 см

На рисунке 232 треугольник АВС описан около окружности с центром О.

Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 см

Докажем теорему об окружности, вписанной в треугольник.

В любой треугольник можно вписать окружность.

Рассмотрим произвольный треугольник АВС и обозначим буквой О точку пересечения его биссектрис. Проведём из точки О перпендикуляры OK, OL и ОМ соответственно к сторонам АВ, ВС и СА (см. рис. 232). Так как точка О равноудалена от сторон треугольника АВС, то OK = OL = ОМ. Поэтому окружность с центром О радиуса ОК проходит через точки К, L и М. Стороны треугольника АВС касаются этой окружности в точках К, L, М, так как они перпендикулярны к радиусам OK, OL и ОМ. Значит, окружность с центром О радиуса ОК является вписанной в треугольник АВС. Теорема доказана.

Отметим, что в треугольник можно вписать только одну окружность.

В самом деле, допустим, что в треугольник можно вписать две окружности. Тогда центр каждой окружности равноудалён от сторон треугольника и, значит, совпадает с точкой О пересечения биссектрис треугольника, а радиус равен расстоянию от точки О до сторон треугольника. Следовательно, эти окружности совпадают.

Обратимся к рисунку 232. Мы видим, что треугольник АВС составлен из трёх треугольников: ABO, ВСО и САО. Если в каждом из этих треугольников принять за основание сторону треугольника АВС, то высотой окажется радиус r окружности, вписанной в треугольник АВС. Поэтому площадь S треугольника АВС выражается формулой

Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 см

площадь треугольника равна произведению его полупериметра на радиус вписанной в него окружности.

В отличие от треугольника не во всякий четырёхугольник можно вписать окружность.

Рассмотрим, например, прямоугольник, у которого смежные стороны не равны, т. е. прямоугольник, не являющийся квадратом. Ясно, что в такой прямоугольник можно «поместить» окружность, касающуюся трёх его сторон (рис. 233, а), но нельзя «поместить» окружность так, чтобы она касалась всех четырёх его сторон, т. е. нельзя вписать окружность. Если же в четырёхугольник можно вписать окружность, то его стороны обладают следующим замечательным свойством:

В любом описанном четырёхугольнике суммы противоположных сторон равны.

Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 см

Это свойство легко установить, используя рисунок 233, б, на котором одними и теми же буквами обозначены равные отрезки касательных. В самом деле, АВ + CD = а + b + с + d, ВС + AD-a + b + c + d, поэтому АВ + CD = ВС + AD. Оказывается, верно и обратное утверждение:

Если суммы противоположных сторон выпуклого четырёхугольника равны, то в него можно вписать окружность (см. задачу 724).

Описанная окружность

Если все вершины многоугольника лежат на окружности, то окружность называется описанной около многоугольника, а многоугольник — вписанным в эту окружность. На рисунке 234 четырёхугольник ABCD вписан в окружность с центром О, а четырёхугольник AECD не является вписанным в эту окружность, так как вершина Е не лежит на окружности.

Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 см

Треугольник АВС на рисунке 235 является вписанным в окружность с центром О.

Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 см

Докажем теорему об окружности, описанной около треугольника.

Около любого треугольника можно описать окружность.

Рассмотрим произвольный треугольник АВС. Обозначим буквой О точку пересечения серединных перпендикуляров к его сторонам и проведём отрезки ОА, ОВ и ОС (рис. 235). Так как точка О равноудалена от вершин треугольника АВС, то О А = ОВ = ОС. Поэтому окружность с центром О радиуса ОА проходит через все три вершины треугольника и, значит, является описанной около треугольника АВС. Теорема доказана.

Отметим, что около треугольника можно описать только одну окружность.

В самом деле, допустим, что около треугольника можно описать две окружности. Тогда центр каждой из них равноудалён от его вершин и поэтому совпадает с точкой О пересечения серединных перпендикуляров к сторонам треугольника, а радиус равен расстоянию от точки О до вершин треугольника. Следовательно, эти окружности совпадают.

В отличие от треугольника около четырёхугольника не всегда можно описать окружность.

Например, нельзя описать окружность около ромба, не являющегося квадратом (объясните почему). Если же около четырёхугольника можно описать окружность, то его углы обладают следующим замечательным свойством:

В любом вписанном четырёхугольнике сумма противоположных углов равна 180°.

Это свойство легко установить, если обратиться к рисунку 236 и воспользоваться теоремой о вписанном угле. В самом деле,

Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 см

Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 см

Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 см

Оказывается, верно и обратное:

Если сумма противоположных углов четырёхугольника равна 180°, то около него можно описать окружность (см. задачу 729).

Задачи

689. В равнобедренном треугольнике основание равно 10 см, а боковая сторона равна 13 см. Найдите радиус окружности, вписанной в этот треугольник.

690. Найдите основание равнобедренного треугольника, если центр вписанной в него окружности делит высоту, проведённую к основанию, в отношении 12 : 5, считая от вершины, а боковая сторона равна 60 см.

691. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см, считая от основания. Найдите периметр треугольника.

692. В треугольник АВС вписана окружность, которая касается сторон АВ, ВС и СА в точках Р, Q и R. Найдите АР, РВ, BQ, QC, СВ, RA, если АВ = 10 см, ВС = 12 см, СА = 5 см.

693. В прямоугольный треугольник вписана окружность радиуса г. Найдите периметр треугольника, если: а) гипотенуза равна 26 см, r = 4см; б) точка касания делит гипотенузу на отрезки, равные 5 см и 12 см.

694. Найдите диаметр окружности, вписанной в прямоугольный треугольник, если гипотенуза треугольника равна с, а сумма катетов равна m.

695. Сумма двух противоположных сторон описанного четырёхугольника равна 15 см. Найдите периметр этого четырёхугольника.

696. Докажите, что если в параллелограмм можно вписать окружность, то этот параллелограмм — ромб.

697. Докажите, что площадь описанного многоугольника равна половине произведения его периметра на радиус вписанной окружности.

698. Сумма двух противоположных сторон описанного четырёхугольника равна 12 см, а радиус вписанной в него окружности равен 5 см. Найдите площадь четырёхугольника.

699. Сумма двух противоположных сторон описанного четырёхугольника равна 10 см, а его площадь — 12 см 2 . Найдите радиус окружности, вписанной в этот четырёхугольник.

700. Докажите, что в любой ромб можно вписать окружность.

701. Начертите три треугольника: остроугольный, прямоугольный и тупоугольный. В каждый из них впишите окружность.

702. В окружность вписан треугольник АВС так, что АВ — диаметр окружности. Найдите углы треугольника, если: а) Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 смBC = 134°; б) Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 смАС = 70°.

703. В окружность вписан равнобедренный треугольник АВС с основанием ВС. Найдите углы треугольника, если Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 смВС= 102°.

704. Окружность с центром О описана около прямоугольного треугольника. а) Докажите, что точка О — середина гипотенузы. б) Найдите стороны треугольника, если диаметр окружности равен d, а один из острых углов треугольника равен α.

705. Около прямоугольного треугольника АВС с прямым углом С описана окружность. Найдите радиус этой окружности, если: а) АС = 8 см, ВС = 6 см; б) АС = 18 см, ∠B = 30°.

706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности равен 10 см.

707. Угол, противолежащий основанию равнобедренного треугольника, равен 120°, боковая сторона треугольника равна 8 см. Найдите диаметр окружности, описанной около этого треугольника.

708. Докажите, что можно описать окружность: а) около любого прямоугольника; б) около любой равнобедренной трапеции.

709. Докажите, что если около параллелограмма можно описать окружность, то этот параллелограмм — прямоугольник.

710. Докажите, что если около трапеции можно описать окружность, то эта трапеция равнобедренная.

711. Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. Для каждого из них постройте описанную окружность.

Ответы к задачам

689. Сумма двух противоположных сторон описанного около окружности четырехугольника равна 18 смсм.

692. АР =1,5 см, РВ = 8,5 см, BQ = 8,5 см, QC = 3,5 см, CR= 3,5 см, RА = 1,5 см.

693. а) 60 см; б) 40 см.

702. a) ∠A = 67°, ∠B = 23°, ∠C = 90°; б) ∠A = 55°, ∠B = 35°, ∠C = 90°.

703. ∠A = 51°, ∠B = ∠C = 64°30′ или ∠A= 129°, ∠B = ∠C = 25°30′.

704. 6) d, d sin α, d cos α.

705. a) 5 cm; б) 18см. Указание. Воспользоваться задачей 704.

709. Указание. Воспользоваться свойством углов вписанного четырёхугольника.

710. Указание. Воспользоваться задачей 659.

📺 Видео

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Описанный четырехугольник, сумма противоположных сторонСкачать

Описанный четырехугольник, сумма противоположных сторон

Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Задача про трапецию, описанную около окружностиСкачать

Задача про трапецию, описанную около окружности

Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольникиСкачать

Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольники

№ 101-200 - Геометрия 9 класс МерзлякСкачать

№ 101-200 - Геометрия 9 класс Мерзляк

Задача 6 №27900 ЕГЭ по математике. Урок 128Скачать

Задача 6 №27900 ЕГЭ по математике. Урок 128

ОГЭ 2024 Ященко 1 вариант ФИПИ школе полный разбор!Скачать

ОГЭ 2024 Ященко 1 вариант ФИПИ школе полный разбор!

11 класс, 44 урок, Описанный четырехугольникСкачать

11 класс, 44 урок, Описанный четырехугольник

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

8 класс, 38 урок, Вписанная окружностьСкачать

8 класс, 38 урок, Вписанная окружность

§ 13 № 1- 55 - Геометрия 7-9 класс ПогореловСкачать

§ 13 № 1- 55 - Геометрия 7-9 класс Погорелов

#58. Олимпиадная задача о четырехугольникеСкачать

#58. Олимпиадная задача о четырехугольнике

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts
Поделиться или сохранить к себе: