Вектора применяются во многих науках, таких как: математика, физика, геометрия и многих других прикладных науках. На практике, они позволяют не делать лишних операций и сократить время выполнения задач. Поэтому, будущим специалистам очень важно понять теорию векторов и научиться решать задачи с ними.
Перед изучением примеров решения задач советуем изучить теоретический материал по векторам, прочитать все определения и свойства. Список тем находится в правом меню.
- Координаты вектора
- Скалярное произведение векторов: свойства, примеры вычисления, физический смысл
- Скалярное произведение в координатах
- Скалярное произведение и его свойства
- Скалярное произведение с примерами и решениями
- Физический смысл скалярного произведения
- Скалярное произведение векторов: теория и решения задач
- Определения и смысл скалярного произведения векторов
- Нахождение скалярного произведения векторов через координаты
- На плоскости
- В пространстве
- Свойства скалярного произведения векторов
- Алгебраические свойства
- Геометрические свойства
- Решить задачу самостоятельно, а затем посмотреть решение
- Матричное представление скалярного произведения векторов и произведение n-мерных векторов
- Угол между двумя векторами
- Решить задачи самостоятельно, а затем посмотреть решения
- Применения скалярного произведения векторов
- Расчёт работы постоянной силы
- Экономический смысл скалярного произведения векторов
- 📺 Видео
Координаты вектора
Теоретический материал по теме — координаты вектора.
Видео:Скалярное произведение векторов решение задачСкачать
Скалярное произведение векторов: свойства, примеры вычисления, физический смысл
Скалярное произведение векторов называют число, равное произведению дин этих векторов на косинус угла между ними.
Обозначение произведения векторов a → и b → имеет вид a → , b → . Преобразуем в формулу:
a → , b → = a → · b → · cos a → , b → ^ . a → и b → обозначают длины векторов, a → , b → ^ — обозначение угла между заданными векторами. Если хоть один вектор нулевой, то есть имеет значение 0, то и результат будет равен нулю, a → , b → = 0
При умножении вектора самого на себя, получим квадрат его дины:
a → , b → = a → · b → · cos a → , a → ^ = a → 2 · cos 0 = a → 2
Скалярное умножение вектора самого на себя называют скалярным квадратом.
Вычисляется по формуле:
a → , b → = a → · b → · cos a → , b → ^ .
Запись a → , b → = a → · b → · cos a → , b → ^ = a → · n p a → b → = b → · n p b → a → показывает, что n p b → a → — это числовая проекция a → на b → , n p a → a → — проекция b → на a → соостветсвенно.
Сформулируем определение произведения для двух векторов:
Скалярное произведение двух векторов a → на b → называют произведение длины вектора a → на проекцию b → на направление a → или произведение длины b → на проекцию a → соответственно.
Видео:Скалярное произведение векторов. Практическая часть. 9 класс.Скачать
Скалярное произведение в координатах
Вычисление скалярного произведения можно производить через координаты векторов в заданной плоскости или в пространстве.
Скаларное произведение двух векторов на плоскости, в трехмерном простарнстве называют сумму координат заданных векторов a → и b → .
При вычислении на плоскости скаларного произведения заданных векторов a → = ( a x , a y ) , b → = ( b x , b y ) в декартовой системе используют:
a → , b → = a x · b x + a y · b y ,
для трехмерного пространства применимо выражение:
a → , b → = a x · b x + a y · b y + a z · b z .
Фактически это является третьим определением скалярного произведения.
Для доказательства используем a → , b → = a → · b → · cos a → , b → ^ = a x · b x + a y · b y для векторов a → = ( a x , a y ) , b → = ( b x , b y ) на декартовой системе.
Следует отложить векторы
O A → = a → = a x , a y и O B → = b → = b x , b y .
Тогда длина вектора A B → будет равна A B → = O B → — O A → = b → — a → = ( b x — a x , b y — a y ) .
Рассмотрим треугольник O A B .
A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) верно , исходя из теоремы косинусов.
По условию видно, что O A = a → , O B = b → , A B = b → — a → , ∠ A O B = a → , b → ^ , значит, формулу нахождения угла между векторами запишем иначе
b → — a → 2 = a → 2 + b → 2 — 2 · a → · b → · cos ( a → , b → ^ ) .
Тогда из первого определения следует, что b → — a → 2 = a → 2 + b → 2 — 2 · ( a → , b → ) , значит ( a → , b → ) = 1 2 · ( a → 2 + b → 2 — b → — a → 2 ) .
Применив формулу вычисления длины векторов, получим:
a → , b → = 1 2 · ( ( a 2 x + a y 2 ) 2 + ( b 2 x + b y 2 ) 2 — ( ( b x — a x ) 2 + ( b y — a y ) 2 ) 2 ) = = 1 2 · ( a 2 x + a 2 y + b 2 x + b 2 y — ( b x — a x ) 2 — ( b y — a y ) 2 ) = = a x · b x + a y · b y
( a → , b → ) = a → · b → · cos ( a → , b → ^ ) = = a x · b x + a y · b y + a z · b z
– соответственно для векторов трехмерного пространства.
Скалярное произведение векторов с координатами говорит о том, что скалярный квадрат вектора равен сумме квадратов его координат в пространстве и на плоскости соответственно. a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) и ( a → , a → ) = a x 2 + a y 2 .
Видео:Скалярное произведение векторов. 9 класс.Скачать
Скалярное произведение и его свойства
Существуют свойства скалярного произведения, которые применимы для a → , b → и c → :
- коммутативность ( a → , b → ) = ( b → , a → ) ;
- дистрибутивность ( a → + b → , c → ) = ( a → , c → ) + ( b → , c → ) , ( a → + b → , c → ) = ( a → , b → ) + ( a → , c → ) ;
- сочетательное свойство ( λ · a → , b → ) = λ · ( a → , b → ) , ( a → , λ · b → ) = λ · ( a → , b → ) , λ — любое число;
- скалярный квадрат всегда больше нуля ( a → , a → ) ≥ 0 , где ( a → , a → ) = 0 в том случае, когда a → нулевой.
Пример 1
Свойства объяснимы благодаря определению скалярного произведения на плоскости и свойствам при сложении и умножении действительных чисел.
Доказать свойство коммутативности ( a → , b → ) = ( b → , a → ) . Из определения имеем, что ( a → , b → ) = a y · b y + a y · b y и ( b → , a → ) = b x · a x + b y · a y .
По свойству коммутативности равенства a x · b x = b x · a x и a y · b y = b y · a y верны, значит a x · b x + a y · b y = b x · a x + b y · a y .
Отсюда следует, что ( a → , b → ) = ( b → , a → ) . Что и требовалось доказать.
Дистрибутивность справедлива для любых чисел:
( a ( 1 ) → + a ( 2 ) → + . . . + a ( n ) → , b → ) = ( a ( 1 ) → , b → ) + ( a ( 2 ) → , b → ) + . . . + ( a ( n ) → , b → )
и ( a → , b ( 1 ) → + b ( 2 ) → + . . . + b ( n ) → ) = ( a → , b ( 1 ) → ) + ( a → , b ( 2 ) → ) + . . . + ( a → , b → ( n ) ) ,
( a ( 1 ) → + a ( 2 ) → + . . . + a ( n ) → , b ( 1 ) → + b ( 2 ) → + . . . + b ( m ) → ) = = ( a ( 1 ) → , b ( 1 ) → ) + ( a ( 1 ) → , b ( 2 ) → ) + . . . + ( a ( 1 ) → , b ( m ) → ) + + ( a ( 2 ) → , b ( 1 ) → ) + ( a ( 2 ) → , b ( 2 ) → ) + . . . + ( a ( 2 ) → , b ( m ) → ) + . . . + + ( a ( n ) → , b ( 1 ) → ) + ( a ( n ) → , b ( 2 ) → ) + . . . + ( a ( n ) → , b ( m ) → )
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Скалярное произведение с примерами и решениями
Любая задача такого плана решается с применением свойств и формул, касающихся скалярного произведения:
- ( a → , b → ) = a → · b → · cos ( a → , b → ^ ) ;
- ( a → , b → ) = a → · n p a → b → = b → · n p b → a → ;
- ( a → , b → ) = a x · b x + a y · b y или ( a → , b → ) = a x · b x + a y · b y + a z · b z ;
- ( a → , a → ) = a → 2 .
Рассмотрим некоторые примеры решения.
Длина a → равна 3, длина b → равна 7. Найти скалярное произведение, если угол имеет 60 градусов.
По условию имеем все данные, поэтому вычисляем по формуле:
( a → , b → ) = a → · b → · cos ( a → , b → ^ ) = 3 · 7 · cos 60 ° = 3 · 7 · 1 2 = 21 2
Ответ: ( a → , b → ) = 21 2 .
Заданны векторы a → = ( 1 , — 1 , 2 — 3 ) , b → = ( 0 , 2 , 2 + 3 ) . Чему равно скалярной произведение.
В данном примере рассматривается формула вычисления по координатам, так как они заданы в условии задачи:
( a → , b → ) = a x · b x + a y · b y + a z · b z = = 1 · 0 + ( — 1 ) · 2 + ( 2 + 3 ) · ( 2 + 3 ) = = 0 — 2 + ( 2 — 9 ) = — 9
Ответ: ( a → , b → ) = — 9
Найти скалярное произведение A B → и A C → . На координатной плоскости заданы точки A ( 1 , — 3 ) , B ( 5 , 4 ) , C ( 1 , 1 ) .
Для начала вычисляются координаты векторов, так как по условию даны координаты точек:
A B → = ( 5 — 1 , 4 — ( — 3 ) ) = ( 4 , 7 ) A C → = ( 1 — 1 , 1 — ( — 3 ) ) = ( 0 , 4 )
Подставив в формулу с использованием координат, получим:
( A B → , A C → ) = 4 · 0 + 7 · 4 = 0 + 28 = 28 .
Ответ: ( A B → , A C → ) = 28 .
Заданы векторы a → = 7 · m → + 3 · n → и b → = 5 · m → + 8 · n → , найти их произведение. m → равен 3 и n → равен 2 единицам, они перпендикулярные.
( a → , b → ) = ( 7 · m → + 3 · n → , 5 · m → + 8 · n → ) . Применив свойство дистрибутивности, получим:
( 7 · m → + 3 · n → , 5 · m → + 8 · n → ) = = ( 7 · m → , 5 · m → ) + ( 7 · m → , 8 · n → ) + ( 3 · n → , 5 · m → ) + ( 3 · n → , 8 · n → )
Выносим коэффициент за знак произведения и получим:
( 7 · m → , 5 · m → ) + ( 7 · m → , 8 · n → ) + ( 3 · n → , 5 · m → ) + ( 3 · n → , 8 · n → ) = = 7 · 5 · ( m → , m → ) + 7 · 8 · ( m → , n → ) + 3 · 5 · ( n → , m → ) + 3 · 8 · ( n → , n → ) = = 35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( n → , m → ) + 24 · ( n → , n → )
По свойству коммутативности преобразуем:
35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( n → , m → ) + 24 · ( n → , n → ) = = 35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( m → , n → ) + 24 · ( n → , n → ) = = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → )
В итоге получим:
( a → , b → ) = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → ) .
Теперь применим формулу для скалярного произведения с заданным по условию углом:
( a → , b → ) = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → ) = = 35 · m → 2 + 71 · m → · n → · cos ( m → , n → ^ ) + 24 · n → 2 = = 35 · 3 2 + 71 · 3 · 2 · cos π 2 + 24 · 2 2 = 411 .
Ответ: ( a → , b → ) = 411
Если имеется числовая проекция.
Найти скалярное произведение a → и b → . Вектор a → имеет координаты a → = ( 9 , 3 , — 3 ) , проекция b → с координатами ( — 3 , — 1 , 1 ) .
По условию векторы a → и проекция b → противоположно направленные, потому что a → = — 1 3 · n p a → b → → , значит проекция b → соответствует длине n p a → b → → , при чем со знаком «-»:
n p a → b → → = — n p a → b → → = — ( — 3 ) 2 + ( — 1 ) 2 + 1 2 = — 11 ,
Подставив в формулу, получим выражение:
( a → , b → ) = a → · n p a → b → → = 9 2 + 3 2 + ( — 3 ) 2 · ( — 11 ) = — 33 .
Ответ: ( a → , b → ) = — 33 .
Задачи при известном скалярном произведении, где необходимо отыскать длину вектора или числовую проекцию.
Какое значение должна принять λ при заданном скалярном произведении a → = ( 1 , 0 , λ + 1 ) и b → = ( λ , 1 , λ ) будет равным -1.
Из формулы видно, что необходимо найти сумму произведений координат:
( a → , b → ) = 1 · λ + 0 · 1 + ( λ + 1 ) · λ = λ 2 + 2 · λ .
В дано имеем ( a → , b → ) = — 1 .
Чтобы найти λ , вычисляем уравнение:
λ 2 + 2 · λ = — 1 , отсюда λ = — 1 .
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Физический смысл скалярного произведения
Механика рассматривает приложение скалярного произведения.
При работе А с постоянной силой F → перемещаемое тело из точки M в N можно найти произведение длин векторов F → и M N → с косинусом угла между ними, значит работа равна произведению векторов силы и перемещения:
Перемещение материальной точки на 3 метра под действием силы равной 5 ньтонов направлено под углом 45 градусов относительно оси. Найти A .
Так как работа – это произведение вектора силы на перемещение, значит, исходя из условия F → = 5 , S → = 3 , ( F → , S → ^ ) = 45 ° , получим A = ( F → , S → ) = F → · S → · cos ( F → , S → ^ ) = 5 · 3 · cos ( 45 ° ) = 15 2 2 .
Ответ: A = 15 2 2 .
Материальная точка, перемещаясь из M ( 2 , — 1 , — 3 ) в N ( 5 , 3 λ — 2 , 4 ) под силой F → = ( 3 , 1 , 2 ) , совершила работа равную 13 Дж. Вычислить длину перемещения.
При заданных координатах вектора M N → имеем M N → = ( 5 — 2 , 3 λ — 2 — ( — 1 ) , 4 — ( — 3 ) ) = ( 3 , 3 λ — 1 , 7 ) .
По формуле нахождения работы с векторами F → = ( 3 , 1 , 2 ) и M N → = ( 3 , 3 λ — 1 , 7 ) получим A = ( F ⇒ , M N → ) = 3 · 3 + 1 · ( 3 λ — 1 ) + 2 · 7 = 22 + 3 λ .
По условию дано, что A = 13 Д ж , значит 22 + 3 λ = 13 . Отсюда следует λ = — 3 , значит и M N → = ( 3 , 3 λ — 1 , 7 ) = ( 3 , — 10 , 7 ) .
Чтобы найти длину перемещения M N → , применим формулу и подставим значения:
Видео:ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать
Скалярное произведение векторов: теория и решения задач
Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.
Видео:9 класс, 18 урок, Скалярное произведение векторовСкачать
Определения и смысл скалярного произведения векторов
Найти скалярное произведение векторов можно несколькими различными способами. Способ зависит от того, какие условия даны в задаче. Поэтому существуют несколько определений скалярного произведения.
В задаче могут в явном или неявном виде присутствовать длины перемножаемых векторов и косинус угла между ними. В этом случае действует следующее определение.
Определение 1. Скалярным произведением векторов называется число (скаляр), равное произведению длин (модулей) этих векторов на косинус угла между ними. Формула скалярного произведения векторов согласно определению 1: (1)
Можно встретить и другое название этой операции: внутреннее произведение.
Скалярное произведение вектора на себя называется скалярным квадратом.
Справедливо и другое определение, полностью равносильное определению 1.
Определение 2. Скалярным произведением векторов называется число (скаляр), равное произведению длины одного их этих векторов на проекцию другого вектора на ось, определяемую первым из указанных векторов. Формула согласно определению 2:
(2)
(3)
Но в задаче могут в явном или неявном виде присутствовать координаты перемножаемых векторов. Как на плоскости, так и в пространстве. Тогда справедливо следующее определение.
Определение 3. Скалярное произведение векторов — это число, равное сумме попарных произведений их соответствующих координат.
Два перемножаемых вектора могут быть представлены также в виде матриц: первый вектор — в виде матрицы-строки, а второй — в виде матрицы-столбца:
.
В этом случае верно следующее определение.
Определение 4. Скалярное произведение векторов, представленных в виде матрицы-строки и матрицы-столбца представляет собой произведение этих матриц.
Почему скалярное произведение векторов называется именно скалярным и что представляет собой? Чем оно отличается от результатов других операций над векторами? Что такое скаляр? Скаляр — это число. И скалярное произведение векторов — это тоже число. Этим оно и отличается от уже рассмотренной суммы векторов, и от векторного произведения векторов, которое ещё предстоит рассмотреть. В отличие от скалярного произведения, сумма векторов — это вектор, и векторное произведение — тоже вектор.
На этом уроке будем решать распространённые задачи не только на непосредственное вычисление скалярного произведения, но и на выяснение ортогональности (перпендикулярности) векторов, вида угла (тупой, острый, прямой) между векторами, вычисление скалярного произведения векторов, которые даны в координатах, вычисление длин диагоналей параллелограма, построенного на вектора. Но все по порядку. Перед каждым видом задач будем обращать внимание на то, что на этот счёт гласит теория. По ходу урока вам пригодится онлайн-калькулятор для проверки решения задач на скалярное произведение векторов.
Если в задаче и длины векторов, и угол между ними преподнесены «на блюдечке с голубой каёмочкой», то условие задачи и её решение выглядят так:
Пример 1. Даны векторы . Найти скалярное произведение векторов , если их длины и угол между ними представлены следующими значениями:
Задачу с применением этой формулы решим после следующего важного теоретического пункта.
Видео:СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторыСкачать
Нахождение скалярного произведения векторов через координаты
То же самое число можно получить, если перемножаемые векторы заданы своими координатами. Повторим определение для этого случая.
Определение 3. Скалярное произведение векторов — это число, равное сумме попарных произведений их соответствующих координат.
На плоскости
Если два вектора и на плоскости определены своими двумя декартовыми прямоугольными координатами
,
то скалярное произведение этих векторов равно сумме попарных произведений их соответствующих координат:
.
Пример 2. Найти численную величину проекции вектора на ось, параллельную вектору .
Решение. Находим скалярное произведение векторов, складывая попарные произведения их координат:
.
Теперь нам требуется приравнять полученное скалярное произведение произведению длины вектора на проекцию вектора на ось, параллельную вектору (в соответствии с формулой ).
Находим длину вектора как квадратный корень из суммы квадратов его координат:
.
Составляем уравнение и решаем его:
Ответ. Искомая численная величина равна минус 8.
В пространстве
Если два вектора и в пространстве определены своими тремя декартовыми прямоугольными координатами
,
то скалярное произведение этих векторов также равно сумме попарных произведений их соответствующих координат, только координат уже три:
.
Задача на нахождение скалярного произведения рассмотренным способом — после разбора свойств скалярного произведения. Потому что в задаче потребуется определить, какой угол образуют перемножаемые векторы.
Видео:Полный разбор задач с векторами №2 ЕГЭ ПРОФИЛЬ 2024 | Профильная математика ЕГЭ 2024 | УМСКУЛСкачать
Свойства скалярного произведения векторов
Алгебраические свойства
1. (переместительное свойство: от перемены местами перемножаемых векторов величина их скалярного произведения не меняется).
2. (сочетательное относительно числового множителя свойство: скалярное произведение вектора, умноженного на некоторый множитель, и другого вектора, равно скалярному произведению этих векторов, умноженному на тот же множитель).
3. (распределительное относительно суммы векторов свойство: скалярное произведение суммы двух векторов на третий вектор равно сумме скалярных произведений первого вектора на третий вектор и второго вектора на третий вектор).
4. (скалярный квадрат вектора больше нуля), если — ненулевой вектор, и , если — нулевой вектор.
Геометрические свойства
В определениях изучаемой операции мы уже касались понятия угла между двумя векторами. Пора уточнить это понятие.
На рисунке выше видны два вектора, которые приведены к общему началу. И первое, на что нужно обратить внимание: между этими векторами существуют два угла — φ 1 и φ 2 . Какой из этих углов фигурирует в определениях и свойствах скалярного произведения векторов? Сумма рассмотренных углов равна 2π и поэтому косинусы этих углов равны. В определение скалярного произведения входит только косинус угла, а не значение его выражения. Но в свойствах рассматривается только один угол. И это тот из двух углов, который не превосходит π , то есть 180 градусов. На рисунке этот угол обозначен как φ 1 .
1. Два вектора называют ортогональными и угол между этими векторами — прямой (90 градусов или π/2 ), если скалярное произведение этих векторов равно нулю:
.
Ортогональностью в векторной алгебре называется перпендикулярность двух векторов.
2. Два ненулевых вектора составляют острый угол (от 0 до 90 градусов, или, что тоже самое — меньше π/2 ) тогда и только тогда, когда их скалярное произведение положительно.
3. Два ненулевых вектора составляют тупой угол (от 90 до 180 градусов, или, что то же самое — больше π/2 ) тогда и только тогда, когда их скалярное произведение отрицательно.
Пример 3. В координатах даны векторы:
.
Вычислить скалярные произведения всех пар данных векторов. Какой угол (острый, прямой, тупой) образуют эти пары векторов?
Решение. Вычислять будем путём сложения произведений соответствующих координат.
.
Получили отрицательное число, поэтому векторы образуют тупой угол.
.
Получили положительное число, поэтому векторы образуют острый угол.
.
Получили положительное число, поэтому векторы образуют острый угол.
.
Получили нуль, поэтому векторы образуют прямой угол.
.
Получили положительное число, поэтому векторы образуют острый угол.
.
Получили положительное число, поэтому векторы образуют острый угол.
Пример 4. Даны длины двух векторов и угол между ними:
.
Определить, при каком значении числа векторы и ортогональны (перпендикулярны).
Решение. Перемножим векторы по правилу умножения многочленов:
.
Теперь вычислим каждое слагаемое:
.
Составим уравнение (равенство произведения нулю), приведём подобные члены и решим уравнение:
Ответ: мы получили значение λ = 1,8 , при котором векторы ортогональны.
Пример 5. Доказать, что вектор ортогонален (перпендикулярен) вектору
Решение. Чтобы проверить ортогональность, перемножим векторы и как многочлены, подставляя вместо его выражение, данное в условии задачи:
.
Для этого нужно каждый член (слагаемое) первого многочлена умножить на каждый член второго и полученные произведения сложить:
.
В полученном результате дробь за счёт сокращается. Получается следующий результат:
.
Вывод: в результате умножения получили нуль, следовательно, ортогональность (перпендикулярность) векторов доказана.
Решить задачу самостоятельно, а затем посмотреть решение
Пример 6. Даны длины векторов и , a угол между этими векторами равен π/4 . Определить, при каком значении μ векторы и взаимно перпендикулярны.
Видео:Скалярное произведение векторов через координаты. 9 класс.Скачать
Матричное представление скалярного произведения векторов и произведение n-мерных векторов
Иногда выигрышным для наглядности является представление двух перемножаемых векторов в виде матриц. Тогда первый вектор представлен в виде матрицы-строки, а второй — в виде матрицы-столбца:
Тогда скалярное произведение векторов будет произведением этих матриц:
Результат тот же, что и полученный способом, который мы уже рассмотрели. Получили одно единственное число, и произведение матрицы-строки на матрицу-столбец также является одним единственным числом.
В матричной форме удобно представлять произведение абстрактных n-мерных векторов. Так, произведение двух четырёхмерных векторов будет произведением матрицы-строки с четырьмя элементами на матрицу-столбец также с четырьмя элементами, произведение двух пятимерных векторов — произведением матрицы-строки с пятью элементами на матрицу-столбец также с пятью элементами и так далее.
Пример 7. Найти скалярные произведения пар векторов
,
используя матричное представление.
Решение. Первая пара векторов. Представляем первый вектор в виде матрицы-строки, а второй — в виде матрицы-столбца. Находим скалярное произведение этих векторов как произведение матрицы-строки на матрицу-столбец:
Аналогично представляем вторую пару и находим:
Как видим, результаты получились те же, что и у тех же пар из примера 2.
Видео:Скалярное произведение векторов. Решение задач. Геометрия 9 класс.Скачать
Угол между двумя векторами
Вывод формулы косинуса угла между двумя векторами очень красив и краток.
Чтобы выразить скалярное произведение векторов
(1)
в координатной форме, предварительно найдём скалярные произведение ортов. Скалярное произведение вектора на само себя по определению:
То, что записано в формуле выше, означает: скалярное произведение вектора на самого себя равно квадрату его длины. Косинус нуля равен единице, поэтому квадрат каждого орта будет равен единице:
Так как векторы
попарно перпендикулярны, то попарные произведения ортов будут равны нулю:
Теперь выполним умножение векторных многочленов:
Подставляем в правую часть равенства значения соответствующих скалярных произведений ортов:
Получаем формулу косинуса угла между двумя векторами:
Пример 8. Даны три точки A(1;1;1), B(2;2;1), C(2;1;2).
Найти угол .
Решение. Находим координаты векторов:
,
.
По формуле косинуса угла получаем:
Следовательно, .
Пример 9. Даны два вектора
Найти сумму, разность, длину, скалярное произведение и угол между ними.
5.Угол между и :
Решить задачи самостоятельно, а затем посмотреть решения
Пример 10. Определить, какой угол (острый, тупой или прямой) образуют и .
Пример 11. Определить угол треугольника ABC при вершине A, если , , .
Пример 12. На векторах и построен параллелограмм. Вычислить длины диагоналей параллелограмма, если , , угол .
Пример 13. Среди векторов
Найти а) коллинеарные; б) ортогональные.
а) проверим пропорциональность соответствующих координат векторов — условие коллинеарности (повторение материала предыдущей части темы «Векторы»).
Для векторов и :
Равенство не выполняется.
Для векторов и :
Для векторов и :
Равенство не выполняется.
Наше исследование показало, что коллинеарны векторы и .
б) найдём скалярные произведения векторов.
Наше исследование показало, что ортогональны векторы и и и .
Видео:Профильный ЕГЭ 2024. Векторы. Координатная плоскость. Задача 2Скачать
Применения скалярного произведения векторов
Расчёт работы постоянной силы
Посмотрите ещё раз на рисунок в начале статьи. Пусть материальная точка перемещается прямолинейно из начала координат в конец вектора B под действием постоянной силы F = A, образующей угол с перемещением S = A. Из физики известно, что работа силы F при перемещении S равна . Таким образом, работа постоянной силы при прямолинейном перемещении её точки приложения равна скалярному произведению вектора силы F = B на вектор перемещения S = A.
Скалярное произведение векторов позволяет находить угол между двумя векторами. Поэтому оно часто встречается в последующих разделах математики, особенно, аналитической геометрии. Стоит ли говорить о том, что нахождение скалярного произведения векторов — фундаментальный навык для любого будущего инженера, проектирующего всё что угодно, от гладильных досок и лестниц-стремянок до зданий, или для программиста, собирающегося разрабатывать игры?
Экономический смысл скалярного произведения векторов
В экономических задачах можно рассматривать скалярное произведение вектора цен p
на вектор объёма проданных товаров x . Скалярное произведение px в этом случае даёт суммарную стоимость проданных товаров x при ценах p . Например, если объём всех товаров, проданных предприятием, выражается вектором x = (400; 750; 200; 300), элементы которого означают соответственно количество товаров различных групп, а цены в одних и тех же денежных единицах заданы в соответствующем порядке вектором p = (3; 2,1; 1,2; 0,5), то скалярное произведение
выражает суммарную стоимость всех товаров x.
📺 Видео
Эглит М.Э.- Основы механики сплошных сред - 12. Об определяющих соотношениях в моделях сплошных средСкачать
ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать
Скалярное произведение векторов #артуршарафиев #егэ #профиль #егэпрофиль #профильнаяматематикаСкачать
Геометрия 11 класс (Урок№2 - Скалярное произведение векторов.)Скачать
Скалярное произведение векторовСкачать
Векторное произведение векторов решение задачСкачать
СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ 9 класс АтанасянСкачать
Векторное произведение векторов | Высшая математикаСкачать