Прямоугольный треугольник – треугольник, в котором один угол прямой (то есть равен 90˚).
Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника.
Стороны, прилежащие к прямому углу, называются катетами .
- Как найти стороны прямоугольного треугольника
- Онлайн калькулятор
- Найти гипотенузу (c)
- Найти гипотенузу по двум катетам
- Найти гипотенузу по катету и прилежащему к нему острому углу
- Найти гипотенузу по катету и противолежащему к нему острому углу
- Найти гипотенузу по двум углам
- Найти катет
- Найти катет по гипотенузе и катету
- Найти катет по гипотенузе и прилежащему к нему острому углу
- Найти катет по гипотенузе и противолежащему к нему острому углу
- Найти катет по второму катету и прилежащему к нему острому углу
- Найти катет по второму катету и противолежащему к нему острому углу
- Противолежащий катет
- 💡 Видео
Признаки равенства прямоугольных треугольников
Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны ( по двум катетам ).
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны ( по катету и острому углу ).
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и острому углу ).
Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и катету ).
Свойства прямоугольного треугольника
1. Сумма острых углов прямоугольного треугольника равна 90˚.
2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.
И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.
3. Теорема Пифагора:
, где – катеты, – гипотенуза. Видеодоказательство
4. Площадь прямоугольного треугольника с катетами :
5. Высота прямоугольного треугольника, проведенная к гипотенузе выражается через катеты и гипотенузу следующим образом:
6. Центр описанной окружности – есть середина гипотенузы.
7. Радиус описанной окружности есть половина гипотенузы :
8. Медиана, проведенная к гипотенузе, равна ее половине
9. Радиус вписанной окружности выражается через катеты и гипотенузу следующим образом:
Тригонометрические соотношения в прямоугольном треугольнике смотрите здесь.
Видео:Катеты и гипотенузаСкачать
Как найти стороны прямоугольного треугольника
Видео:ПРИЛЕЖАЩИЙ КАТЕТ, КАК ТЕБЯ НАЙТИ?Скачать
Онлайн калькулятор
Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):
- для гипотенузы (с):
- длины катетов a и b
- длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
- длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
- для катета:
- длину гипотенузы (с) и длину одного из катетов
- длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
- длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
- длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
- длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)
Введите их в соответствующие поля и получите результат.
Найти гипотенузу (c)
Найти гипотенузу по двум катетам
Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?
Формула
следовательно: c = √ a² + b²
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:
c = √ 3² + 4² = √ 9 + 16 = √ 25 = 5 см
Найти гипотенузу по катету и прилежащему к нему острому углу
Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?
Формула
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:
c = 2 / cos(60) = 2 / 0.5 = 4 см
Найти гипотенузу по катету и противолежащему к нему острому углу
Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?
Формула
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:
c = 2 / sin(30) = 2 / 0.5 = 4 см
Найти гипотенузу по двум углам
Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.
Найти катет
Найти катет по гипотенузе и катету
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?
Формула
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:
a = √ 5² — 4² = √ 25 — 16 = √ 9 = 3 см
Найти катет по гипотенузе и прилежащему к нему острому углу
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?
Формула
Пример
Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:
b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см
Найти катет по гипотенузе и противолежащему к нему острому углу
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?
Формула
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:
a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см
Найти катет по второму катету и прилежащему к нему острому углу
Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?
Формула
Пример
Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:
b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см
Найти катет по второму катету и противолежащему к нему острому углу
Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?
Формула
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:
Видео:Что такое синус, косинус и тангенс угла в прямоугольном треугольнике. Часть 1Скачать
Противолежащий катет
Противолежащий катет — одно из важнейших понятий прямоугольного треугольника, на которое опирается определение синуса, тангенса и котангенса и которое широко используется при решении различных геометрических задач.
Один и тот же катет может выступать как в роли противолежащего, так и в роли прилежащего катета. Все зависит от того, по отношению к какому углу он рассматривается.
Как определить противолежащий катет?
Само название — противо лежащий — подсказывает его расположение.
Противолежащий катет — это катет, который лежит напротив данного угла.
в треугольнике ABC
катет, противолежащий углу A
В этом же треугольнике ABC
катет, противолежащий углу C
Найти противолежащий катет поможет такая подсказка:
в названии катета, противолежащего данному углу, нет буквы, по которой назван этот угол.
(угол — A, противолежащий катет — BC. В названии BC нет буквы A;
угол — C, противолежащий катет — AB. В названии AB нет буквы С).
Одна из букв в названии противолежащего катета — «имя» прямого угла (в приведенных выше примерах — это B).
Противолежащий катет обязательно лежит напротив острого угла. Напротив прямого угла лежит гипотенуза!
💡 Видео
Теорема Пифагора для чайников)))Скачать
Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать
Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать
7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать
Геометрия 7 класс (Урок№9 - Треугольник.)Скачать
Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэСкачать
Прямоугольный треугольникСкачать
№594. В прямоугольном треугольнике один из катетов равен b, а противолежащий угол равен β.Скачать
Лайфхак нахождения катета в прямоугольном треугольникеСкачать
Синус, косинус, тангенс, котангенс в прямоугольном треугольнике #геометрия #школа #огэ #играСкачать
ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать
№259. Угол, противолежащий основанию равнобедренного треугольника, равен 120°. Высота, проведеннаяСкачать
ОГЭ как найти тангенс угла, если нет треугольника #математика #огэ #огэматематика #геометрияСкачать
Нахождение стороны прямоугольного треугольникаСкачать
Построение треугольника по двум сторонам и углу между ними. 7 класс. Геометрия.Скачать
8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать
№595. В прямоугольном треугольнике один из катетов равен b, а прилежащий к нему угол равен α.Скачать