Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой ac

Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой ac

Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой ac

Ответ:

1) При проекции точки B и B1 будут совпадать, так как тВ уже принадлежит этой плоскости.

как следствие BA1=B1A1 и ВС1=В1С1

2) Так как АС параллельна плоскости, то ее проекция А1С1=AC.

3) Рассм треуг А1С1В (он же А1С1В1, по условию задачи он прямоуг) .

Видео:№155. Через вершину прямого угла С равнобедренного прямоугольного треугольника ABCСкачать

№155. Через вершину прямого угла С равнобедренного прямоугольного треугольника ABC

Через вершину В равнобедренного треугольника ABC проведена плоскость, параллельная основанию АС. Найдите углы наклона боковых сторон

Видео:№205. Через вершину С прямого угла прямоугольного треугольника ABC проведена прямая CD, перпендикуляСкачать

№205. Через вершину С прямого угла прямоугольного треугольника ABC проведена прямая CD, перпендикуля

Ваш ответ

Видео:№145. Через вершину А прямоугольного треугольника ABC с прямым углом С проведена прямая AD,Скачать

№145. Через вершину А прямоугольного треугольника ABC с прямым углом С проведена прямая AD,

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,688
  • разное 16,822

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:№152. Через вершину В квадрата ABCD проведена прямая BF, перпендикулярная к его плоскости. НайдитеСкачать

№152. Через вершину В квадрата ABCD проведена прямая BF, перпендикулярная к его плоскости. Найдите

Проверочная работа «13 задание ПРОФИЛЬ ЕГЭ математика»

Видео:№473. Через вершину С треугольника ABC проведена прямая m, параллельная стороне АВ. Докажите,Скачать

№473. Через вершину С треугольника ABC проведена прямая m, параллельная стороне АВ. Докажите,

«Календарь счастливой жизни:
инструменты и механизм работы
для достижения своих целей»

Сертификат и скидка на обучение каждому участнику

Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой ac

ПРОФИЛЬ ЕГЭ математика

1. Дана правильная четырехугольная пирамида SABCD. Плоскость α параллельна прямой АС, проходит через точку В и середину высоты пирамиды.

а) Докажите, что плоскость α делит ребро SD в отношении 2 : 1, считая от точки D.

б) Найдите синус угла между плоскостью α и плоскостью ASC, если угол SAC равен 30°.

2. Боковое ребро правильной треугольной пирамиды SABC равно 6, а косинус угла ASB при вершине боковой грани равен Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой acТочка M — середина ребра SC, точка Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой ac— середина ребра AC.

а) Докажите, что угол между прямыми BM и SA равен углу BMN.

б) Найдите косинус угла между прямыми BM и SA.

3. В основании правильной пирамиды PABCD лежит квадрат ABCD со стороной 9. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.

а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.

б) Найдите площадь сечения пирамиды.

4. В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB = 4 и диагональю BD = 7. Все боковые рёбра пирамиды равны 4. На диагонали BD основания ABCD отмечена точка E, а на ребре AS — точка F так, что SF = BE = 3.

а) Докажите, что плоскость CEF параллельна ребру SB .

б) Плоскость CEF пересекает ребро SD в точке Q. Найдите расстояние от точки Q до плоскости ABC.

5. В конус, радиус основания которого равен 6, вписан шар радиуса 3.

а) Изобразите осевое сечение комбинации этих тел.

б) Найдите отношение площади полной поверхности конуса к площади поверхности шара.

6. В пирамиде SABC в основании лежит правильный треугольник ABC со стороной Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой ac Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой ac Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой acТочка O — основание высоты пирамиды, проведённой из вершины S.

а) Докажите, что точка O лежит вне треугольника ABC.

б) Найдите объём четырёхугольной пирамиды SABCO.

7. Точка M середина ребра AB правильного тетраэдра DABC.

а) Докажите, что ортогональная проекция точки M на плоскость ACD лежит на медиане AP грани ACD.

б) Найдите угол между прямой DM и плоскостью ACD.

8. Основанием прямой треугольной призмы ABCA1B1C1 является прямоугольный треугольник ABC с прямым углом C. Грань ACC1A1 является квадратом.

а) Докажите, что прямые CA1 и AB1 перпендикулярны.

б) Найдите расстояние между прямыми CA1 и AB1, если AC = 4, BC = 7.

9. Длины всех ребер правильной четырёхугольной пирамиды PABCD с вершиной P равны между собой. Точка M — середина бокового ребра пирамиды AP.

а) Докажите, что плоскость, проходящая через точки B и M и перпендикулярная плоскости BDP, делит высоту пирамиды пополам.

б) Найдите угол между прямой BM и плоскостью BDP.

а) Докажите, что B1KLM — правильная пирамида.

ПРОФИЛЬ ЕГЭ математика

1. Точки A, B и C лежат на окружности основания конуса с вершиной S, причём A и C диаметрально противоположны. Точка M — середина BC.

а) Докажите, что прямая SM образует с плоскостью ABC такой же угол, как и прямая AB с плоскостью SBC.

б) Найдите угол между прямой SA и плоскостью SBC, если AB = 4, BC = 6 и Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой ac

2. В кубе ABCDA1B1C1D1 все рёбра равны 4. На его ребре BB1 отмечена точка K так, что KB = 3. Через точки K и C1 построена плоскость α, параллельная прямой BD1.

б) Найдите угол наклона плоскости α к плоскости грани BB1C1C.

3. В основании четырехугольной пирамиды SАВСD лежит параллелограмм АВСD c центром О. Точка N — середина ребра SC, точка L — середина ребра SA.

а) Докажите, что плоскость BNL делит ребро SD в отношении 1 : 2, считая от вершины S.

б) Найдите угол между плоскостями BNL и АВС, если пирамида правильная, SA = 8, а тангенс угла между боковым ребром и плоскостью основания пирамиды равен Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой ac

4. Основание ABCD призмы Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой ac— трапеция с основаниями AB = 2CD.

а) Докажите Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой acпроходит через середину бокового ребра Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой ac

б) Найдите угол между боковым ребром Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой acи этой плоскостью, если призма прямая, трапеция ABCD прямоугольная с прямым углом при вершине B, а BC = CD и Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой ac

5. В правильной треугольной пирамиде SABC сторона основания AB равна 9, а боковое ребро SA = 6. На рёбрах AB и SC отмечены точки K и M соответственно, причём AK : KB = SM : MC = 2 : 7. Плоскость α содержит прямую KM и параллельна прямой SA.

а) Докажите, что плоскость α делит ребро SB в отношении 2 : 7, считая от вершины S.

б) Найдите расстояние между прямыми SA и KM.

6. Сторона правильной треугольной призмы ABCA1B1C1 равна 8. Высота этой призмы равна 6.

а) Докажите, что плоскость, содержащая прямую Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой acи параллельная прямой Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой acделит пополам ребро Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой ac

7. Дана треугольная пирамида DABC, точки M, N, P и Q лежат на рёбрах AB, BC, AD, CD, причём AM : MB = CN : NB = 3 : 1. Точки P и Q — середины рёбер DA и DC соответственно.

а) Докажите, что точки P, Q, M и N лежат в одной плоскости.

б) Найдите отношение многоугольников на которые делит плоскость PQM пирамиду.

8. ABCA 1 B 1 C 1 — правильная призма, сторона AB равна 16. Через точки M и P, лежащие на рёбрах AC и BB1 соответственно, проведена плоскость α, параллельная прямой AB. Сечение призмы этой плоскостью — четырёхугольник, одна сторона которого равна 16, а три другие равны между собой.

а) Докажите что периметр сечения призмы плоскостью α больше 40.

б) Найдите расстояние от точки A до плоскости α, если упомянутый периметр равен 46.

9. В правильной треугольной призме ABCA1B1C1 сторона основания Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой acа боковое ребро AA1 = 5.

а) Найдите длину отрезка A1K, где K — середина ребра BC.

10. В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB = 4 и диагональю BD = 7. Все боковые рёбра пирамиды равны 4. На диагонали BD основания ABCD отмечена точка E, а на ребре AS — точка F так, что SF = BE = 3.

а) Докажите, что плоскость CEF параллельна ребру SB .

б) Плоскость CEF пересекает ребро SD в точке Q. Найдите расстояние от точки Q до плоскости ABC.

ПРОФИЛЬ ЕГЭ математика

б) Найдите угол между плоскостью α и плоскостью ADD1.

2. В правильном тетраэдре MNPQ через биссектрисы NA и QB граней MNP и QNP проведены параллельные плоскости.

а) Найдите отношение суммы объемов отсекаемых от MNPQ тетраэдров к объему MNPQ

б) Найдите расстояние между NA и QB, если ребро тетраэдра равно 1.

а) Докажите, что прямые B1P и QB перпендикулярны.

б) Найдите площадь сечения куба плоскостью, проходящей через точку P и перпендикулярной прямой BQ, если ребро куба равно 10.

4. В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.

а) Докажите, что угол АВС1 прямой.

б) Найдите площадь боковой поверхности цилиндра, если AB = 20, BB1 = 15, B1C1 = 21.

5. Дана треугольная пирамида DABC, точки M, N, P и Q лежат на рёбрах AB, BC, AD, CD, причём AM : MB = CN : NB = 3 : 1. Точки P и Q — середины рёбер DA и DC соответственно.

а) Докажите, что точки P, Q, M и N лежат в одной плоскости.

б) Найдите отношение многоугольников на которые делит плоскость PQM пирамиду.

6. В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB = 12 и Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой acДлины боковых рёбер пирамиды SA = 5, SB = 13, SD = 10.

а) Докажите, что SA — высота пирамиды.

б) Найдите расстояние от вершины A до плоскости SBC.

7. а) Дан прямоугольный параллелепипед Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой acДокажите, что все грани тетраэдра Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой ac— равные треугольники (тетраэдр, обладающий таким свойством, называют равногранным).

8. В правильной треугольной призме ABCA1B1C1 все рёбра равны 1.

а) Докажите, что прямая AB1 параллельна прямой, проходящей через середины отрезков AC и BC1.

б) Найдите косинус угла между прямыми AB1 и BC1.

9. Прямоугольник ABCD и цилиндр расположены таким образом, что AB — диаметр верхнего основания цилиндра, а CD лежит в плоскости нижнего основания и касается его окружности, при этом плоскость прямоугольника наклонена к плоскости основания цилиндра под углом 60°.

а) Докажите, что ABCD — квадрат.

б) Найдите длину той части отрезка BD, которая находится снаружи цилиндра, если радиус цилиндра равен Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой ac

а) Докажите, что плоскость EFT проходит через вершину D1.

б) Найдите угол между плоскостью EFT и плоскостью BB1C1.

ПРОФИЛЬ ЕГЭ математика

а) В каком отношении плоскость ETD1 делит ребро BB1?

б) Найдите угол между плоскостью ETD1 и плоскостью AA1B1.

2. В основании прямой треугольной призмы ABCA1B1C1 лежит равнобедренный треугольник ABC с основанием AC. Точка K — середина ребра A1B1, а точка M делит ребро AC в отношении AM : MC = 1 : 3.

а) Докажите, что KM перпендикулярно AC.

б) Найдите угол между прямой KM и плоскостью ABC, если AB = 12, AC = 16 и AA1 = 6.

3. В треугольной пирамиде SABC известны боковые рёбра: Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой acОснованием высоты этой пирамиды является середина медианы CM треугольника ABC. Эта высота равна 4.

а) Докажите, что треугольник ABC равнобедренный.

б) Найдите объём пирамиды SABC.

4. В основании правильной треугольной призмы ABCA1B1C1лежит треугольник со стороной 6. Высота призмы равна 4. Точка N — середина ребра A1C1.

а) Постройте сечение призмы плоскостью BAN.

б) Найдите периметр этого сечения.

5. В основании MABCD лежит прямоугольник ABCD со сторонами AB = 4 и BC = Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой acвсе боковые ребра пирамиды равны 4. На диагонали BD основания ABCD отмечена точка Е, а на ребрах AM и AB — точка F и G соответственно так, что MF = BE = BG = 3.

а) Докажите, что плоскость GEF проходит через точку C.

б) Найдите длину отрезка, по которому плоскость GEF пересекает грань CMD пирамиды.

6. Длина ребра правильного тетраэдра ABCD равна 1. M — середина ребра BC, L — середина ребра AB.

а) Докажите, что плоскость, параллельная прямой CL и содержащая прямую DM, делит ребро AB в отношении 3 : 1, считая от вершины A.

б) Найдите угол между прямыми DM и CL.

7. Дана пирамида SABC, в которой Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой ac Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой ac

а) Докажите, что ребро SA перпендикулярно ребру BC.

б) Найдите расстояние между ребрами BC и SA.

8. Радиус основания конуса равен 12, а высота конуса равна 5.

а) Постройте сечение конуса плоскостью, проходящей через вершину конуса и взаимно перпендикулярные образующие.

б) Найдите расстояние от плоскости сечения до центра основания конуса.

9. В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания AB = 6, а боковое ребро Через вершину b прямоугольного треугольника abc проведена плоскость b параллельная прямой acНа рёбрах AB, A1D1 и C1D1 отмечены точки M, N и K соответственно, причём AM = A1N = C1K = 1.

а) Пусть L — точка пересечения плоскости MNK с ребром BC. Докажите, что MNKL — квадрат.

б) Найдите площадь сечения призмы плоскостью MNK.

10. В правильной треугольной пирамиде SABC с вершиной S, все рёбра которой равны 4, точка N — середина ребра AC, точка O центр основания пирамиды, точка P делит отрезок SO в отношении 3 : 1, считая от вершины пирамиды.

а) Докажите, что прямая NP перпендикулярна прямой BS.

б) Найдите расстояние от точки B до прямой NP.

📽️ Видео

№158. Через вершину В ромба ABCD проведена прямая ВМ, перпендикулярная к его плоскости. НайдитеСкачать

№158. Через вершину В ромба ABCD проведена прямая ВМ, перпендикулярная к его плоскости. Найдите

№150. Через вершину А прямоугольника ABCD проведена прямая АК, перпендикулярная к плоскостиСкачать

№150. Через вершину А прямоугольника ABCD проведена прямая АК, перпендикулярная к плоскости

Геометрия Через вершину прямого угла B прямоугольного треугольника ABC к его плоскости проведенСкачать

Геометрия Через вершину прямого угла B прямоугольного треугольника ABC к его плоскости проведен

№130. Через вершину В квадрата ABCD проведена прямая ВМ. Известно, что ∠MBA = ∠MBC=90°, МВ =m, АВСкачать

№130. Через вершину В квадрата ABCD проведена прямая ВМ. Известно, что ∠MBA = ∠MBC=90°, МВ =m, АВ

№122. Прямая CD перпендикулярна к плоскости правильного треугольника ABC. Через центр О этогоСкачать

№122. Прямая CD перпендикулярна к плоскости правильного треугольника ABC. Через центр О этого

№193. В треугольнике ABC ∠A=40°, ∠B=70°. Через вершину B проведена прямая BD так, что луч ВССкачать

№193. В треугольнике ABC ∠A=40°, ∠B=70°. Через вершину B проведена прямая BD так, что луч ВС

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

№31. Плоскость α параллельна стороне ВС треугольника ABC и проходит черезСкачать

№31. Плоскость α параллельна стороне ВС треугольника ABC и проходит через

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

№38. Через вершину А ромба ABCD проведена прямая а, параллельная диагонали BD,Скачать

№38. Через вершину А ромба ABCD проведена прямая а, параллельная диагонали BD,

№172. Катет АС прямоугольного треугольника ABC с прямым углом С лежит в плоскости α, а уголСкачать

№172. Катет АС прямоугольного треугольника ABC с прямым углом С лежит в плоскости α, а угол

Через середину К медианы ВМ треугольника АВС и вершину А проведена прямая пересекающая сторону ВС вСкачать

Через середину К медианы ВМ треугольника АВС и вершину А проведена прямая пересекающая сторону ВС в

№245. Через точку пересечения биссектрис ВВ1 и СС1 треугольника ABC проведена прямая, параллельнаяСкачать

№245. Через точку пересечения биссектрис ВВ1 и СС1 треугольника ABC проведена прямая, параллельная

Определение натуральной величины треугольника АВС методом замены плоскостей проекцииСкачать

Определение натуральной величины треугольника АВС методом замены плоскостей проекции
Поделиться или сохранить к себе: