Вопрос по математике:
Сформулируйте, используя законы де Моргана, отрицания следующих утверждений :
а) Четырехугольник АВСД – прямоугольник или параллелограмм;
б) Число 12 – четное и делится на 3.
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!
- Как написать хороший ответ?
- ТЕМА. ВЫСКАЗЫВАНИЯ С КВАНТОРОМ. ОТРИЦАНИЕ ВЫСКАЗЫВАНИЙ И ВЫСКАЗЫВАТЕЛЬНЫХ ФОРМ (С/Р)
- Постройте отрицание следующих высказываний, пользуясь законами де Моргана 1) 11 четное или не меньше 4 2) АВСД это Прямоугольник и АВ неравно ВС?
- Выполните отрицание следующих высказываний : Все люди — братья?
- Если высказывание содержит одно из этих слов, то какое слово будет у его отрицания?
- Постройте таблицу истинности для сложного высказывания _ _ (А + В) * С?
- Постройте отрицания следующих высказываний неверно, что число 3 не является делителем числа 198?
- Логическая операция, имеющая значение «истина», если исходное высказывание ложно, а «ложь» – если исходное высказывание истинно?
- Для какого из приведенных чисел истинно высказывание НЕ(число четное) И (число больше 25)?
- Дано высказывание «Винни — Пух любит мед, и дверь в дом открыта»?
- Даны два высказывания : А — «В Африке водятся жирафы» и В — «В Мурманске идет снег»?
- Для какого из приведенных чисел ложное высказывание : НЕ (число четное) Или ( число?
- Постройте таблицу истинности высказывания(с&a) эквивалентно b?
- 🔍 Видео
Ответы и объяснения 1
Знаете ответ? Поделитесь им!
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
- Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
- Писать без грамматических, орфографических и пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
- Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
- Использовать мат — это неуважительно по отношению к пользователям;
- Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Математика.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!
Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.
Видео:Законы де Моргана || Формулы де Моргана || Правило де МорганаСкачать
ТЕМА. ВЫСКАЗЫВАНИЯ С КВАНТОРОМ. ОТРИЦАНИЕ ВЫСКАЗЫВАНИЙ И ВЫСКАЗЫВАТЕЛЬНЫХ ФОРМ (С/Р)
1. Высказывания с кванторами
2. Истинность высказываний с кванторами
3. Отрицание высказываний и высказывательных форм
ПРАКТИЧЕСКАЯ РАБОТА. ВЫСКАЗЫВАНИЯ С КВАНТОРАМИ. ОТРИЦАНИЕ ВЫСКАЗЫВАНИЙ И ВЫСКАЗЫВАТЕЛЬНЫХ ФОРМ
Цель. Рассмотреть правила определения значения истинности составного высказывания и высказывательных форм с кванторами.
Теоретическая часть
Вопросы к изучению
1. Высказывания с кванторами
2. Истинность высказываний с кванторами
3. Отрицание высказываний и высказывательных форм
Основные понятия темы
Ø квантор общности;
Ø квантор существования;
Ø отрицание высказываний и высказывательных форм.
Правила
Ø нахождения множества истинности составных высказывательных форм:
Т А Ù В = ТА Ç Т В, Т А Ú В = ТА È Т В, Т = Т’А;
Ø построения отрицания предложений различной структуры, в частности,
и Ú ; Û Ù
Û ($ х) ; Û (» х) .
Обозначения
» х – «для всякого х», квантор общности;
$ х — «существует х такое, что …», квантор существования;
— « не А», « неверно, что А», отрицание данного предложения
Практическая часть
1. В высказывании «всякий прямоугольник является четырехугольником» выделите квантор и высказывательную форму. Переформулируйте данное высказывание, заменив слово «всякий» его синонимом.
2. В высказывании «хотя бы одно из чисел первого десятка составное» выделите квантор и высказывательную форму. Переформулируйте данное высказывание, заменив квантор «хотя бы одно» его синонимом.
3. Прочитайте следующие записи, заменив символические обозначения кванторов общности и существования их словесными выражениями: а) («х ÎR) х 2 – 1 = (х+1) (х-1); б) ($ у Î R) 5 + у =5; в) («у ÎR) у + 3 > 0; г) ($ х Î N) х +3 2 + вх +с = 0 имеет хотя бы один корень.
5. Запишите, используя символы, следующие высказывания и определите их значение истинности: а) Всякое число, умноженное на нуль, есть нуль; б) Произведение любого числа и единицы равно этому числу; в) При делении нуля на любое другое число получается нуль; г) Квадрат любого числа неотрицателен.
6. Установите, какие из нижеприведенных высказываний истинны, а какие ложны: а) Во всяком четырехугольнике диагонали равны; б) Существуют числовые выражения, значения которых нельзя найти; в) При делении на 5 некоторых натуральных чисел в остатке получается 7; г) Любое однозначное число является решением неравенства х + 2 > 1.
7. Докажите или опровергните следующие высказывания: а) Существуют уравнения, множество решений которых пусто; б) Всякое целое число является натуральным; в) Сумма любых двух четных чисел есть число четное; г) Хотя бы одно натуральное число является решением уравнения 7: х =2.
8. Данные ниже высказывания взяты из учебников математики для начальных классов. Выясните, какие из них содержат (в явном или неявном виде) квантор и как следует устанавливать их значение истинности (указать только способ и обосновать его выбор): а) От перестановки слагаемых сумма не изменяется; б) Два соседних слагаемых можно заменять их суммой; в) Площадь прямоугольника равна произведению его длины на ширину; г) Существуют четные числа; д) Некоторые числа делятся на 4; е) Среди многоугольников есть треугольники.
9. Сформулируйте отрицания следующих предложений: а) Число 123 делится на 9; б) При делении числа 32 на 5 в остатке получится 7; в) 3+2
11. Определите, являются данные предложения отрицаниями друг друга, или нет; объясните – почему: а) Число 12 – четное. Число 12 – нечетное; б) Все простые числа нечетны. Все простые числа четны; в) Все простые числа нечетны. Существуют четные простые числа; г) Некоторые углы острые. Некоторые углы тупые.
12. Переформулируйте данные предложения так, чтобы они не содержали слов «неверно, что», но имели тот же смысл: а) Неверно, что число 9 – четное или простое; б) Неверно, что треугольник АВС – равнобедренный и прямоугольный; в) Неверно, что каждый четырехугольник является прямоугольником; г) Неверно, что хотя бы в одном прямоугольнике диагонали взаимно перпендикулярны.
13. Сформулируйте предложения, которые начинаются словами «неверно, что» и имеют тот же смысл, что и данные: а) Прямые АВ и СД не параллельны и не пересекаются; б) Стороны четырехугольника АВСД не параллельны или не равны; в) Существуют уравнения, не имеющие действительных корней; г) Все прямоугольники не имеют равных смежных сторон.
14. Постройте отрицания следующих высказываний и выясните, что истинно – данное высказывание или его отрицание: а) Произведение чисел 4070 и 8 меньше, чем сумма чисел 18396 и 14174; б) Частное чисел 25842 и 6 меньше разности чисел 14150 и 9833; в) Среди различных прямоугольников есть такие, площади которых равны; г) Среди чисел есть такие, которые делятся на 5 и на 7; д) Существуют числовые выражения, значения которых нельзя найти.
1. Какие из нижеприведенных предложений являются отрицанием высказывания «Все натуральные числа кратны 5»; свой выбор обоснуйте: а) Все натуральные числа не кратны 5; б) Существуют натуральные числа, не кратные 5; в) Существуют натуральные числа, кратные 5; г) Неверно, что все натуральные числа кратны 5; д) Не все натуральные числа кратны 5.
2. Постройте двумя способами отрицание высказывания: а) Всякое свойство квадрата присуще прямоугольнику; б) Некоторые простые числа являются четными.
3. Известно, что объект Х обладает свойствами a, b, d. Что означает отрицание этого высказывания?
4. Постройте отрицания следующих высказываний: а) существует натуральное число, не делящиеся на 2; б) для любого натурального числа а найдется такое натуральное число, на которое не делится а; в) для любых двух натуральных чисел а, в справедливо одно и только одно из отношений а >в, в > а; г) существуют две непараллельные прямые; д) у всех прямоугольников все углы прямые; е) ни для какого натурального числа а не найдется натуральное число в такое, что а + в
Видео:2.4 Разность множеств, законы де Моргана | Константин Правдин | ИТМОСкачать
Постройте отрицание следующих высказываний, пользуясь законами де Моргана 1) 11 четное или не меньше 4 2) АВСД это Прямоугольник и АВ неравно ВС?
Информатика | 10 — 11 классы
Постройте отрицание следующих высказываний, пользуясь законами де Моргана 1) 11 четное или не меньше 4 2) АВСД это Прямоугольник и АВ неравно ВС.
1)11 нечетное и меньше 4
2) АВСД не Прямоугольник или АВ равно ВС.
Видео:Законы алгебры логики / Закон де Моргана + доказательство [Алгебра логики] #5Скачать
Выполните отрицание следующих высказываний : Все люди — братья?
Выполните отрицание следующих высказываний : Все люди — братья.
У кроликов есть уши.
Некоторые люди — злые.
Пробовал доказать, но учитель говорит что не правильно.
Видео:Правила Де Моргана. Доказательство. Теория множеств.Скачать
Если высказывание содержит одно из этих слов, то какое слово будет у его отрицания?
Если высказывание содержит одно из этих слов, то какое слово будет у его отрицания?
ВСЕГДА НЕКОТОРЫЕ НИКОГДА ВСЕ ИНОГДА.
Видео:Конъюнкция, дизъюнкция, импликация, эквиваленция, отрицание. На примерах из жизни. Логика.Скачать
Постройте таблицу истинности для сложного высказывания _ _ (А + В) * С?
Постройте таблицу истинности для сложного высказывания _ _ (А + В) * С.
Видео:3.8 Де Морган правилаСкачать
Постройте отрицания следующих высказываний неверно, что число 3 не является делителем числа 198?
Постройте отрицания следующих высказываний неверно, что число 3 не является делителем числа 198.
Видео:Законы де Моргана. ЛогикаСкачать
Логическая операция, имеющая значение «истина», если исходное высказывание ложно, а «ложь» – если исходное высказывание истинно?
Логическая операция, имеющая значение «истина», если исходное высказывание ложно, а «ложь» – если исходное высказывание истинно?
А)отрицание Б)дизъюнкция В)конъюнкция Г)композиция.
Видео:Логика и множества. Утверждения и отрицанияСкачать
Для какого из приведенных чисел истинно высказывание НЕ(число четное) И (число больше 25)?
Для какого из приведенных чисел истинно высказывание НЕ(число четное) И (число больше 25).
Видео:Как устроено отрицание кванторов? Душкин объяснитСкачать
Дано высказывание «Винни — Пух любит мед, и дверь в дом открыта»?
Дано высказывание «Винни — Пух любит мед, и дверь в дом открыта».
Сформулируйте отрицание этого высказывания с точки зрения формальной логики.
Видео:Закон поглощения + доказательство. Преобразование логических выражений [Алгебра логики] #7Скачать
Даны два высказывания : А — «В Африке водятся жирафы» и В — «В Мурманске идет снег»?
Даны два высказывания : А — «В Африке водятся жирафы» и В — «В Мурманске идет снег».
Постройте из них три различных сложных высказывания.
Видео:Введение в логику, урок 4: Предикаты и кванторыСкачать
Для какого из приведенных чисел ложное высказывание : НЕ (число четное) Или ( число?
Для какого из приведенных чисел ложное высказывание : НЕ (число четное) Или ( число.
Видео:Операции над множествамиСкачать
Постройте таблицу истинности высказывания(с&a) эквивалентно b?
Постройте таблицу истинности высказывания
(с&a) эквивалентно b.
На странице вопроса Постройте отрицание следующих высказываний, пользуясь законами де Моргана 1) 11 четное или не меньше 4 2) АВСД это Прямоугольник и АВ неравно ВС? из категории Информатика вы найдете ответ для уровня учащихся 10 — 11 классов. Если полученный ответ не устраивает и нужно расшить круг поиска, используйте удобную поисковую систему сайта. Можно также ознакомиться с похожими вопросами и ответами других пользователей в этой же категории или создать новый вопрос. Возможно, вам будет полезной информация, оставленная пользователями в комментариях, где можно обсудить тему с помощью обратной связи.
🔍 Видео
Отрицание высказываний и высказывательных форм. (пункт 21. по учебнику Стойловой Л.П. Математика)Скачать
Лекция 67. Теорема де МорганаСкачать
Отрицание, Дизъюнкция и Конъюнкция. Графическое решение логических выражений. Алгебра логики основыСкачать
Множества. Доказательство равенстваСкачать
Закон отрицания отрицания, 1982Скачать
Предикаты и кванторы. Отрицание предложений с кванторами.Скачать
Кванторы Определение и видыСкачать
ИНФОРМАТИКА 8 класс: Высказывание. Логические операции.Скачать