Сайт по теме четырехугольники

Сайт по теме четырехугольники

Сайт по теме четырехугольники

Четырехугольник — фигура, состоящая из четырех точек и четырех отрезков,последовательно их соединяющих; причем ни одна из трех данных точек не лежит на одной прямой, а отрезки, соединяющие их, не пересекаются.

Соседние вершины — вершины четырехугольника, являющиеся концами одной из его сторон.
Противолежащие вершины — несоседние вершины.
Соседние стороны — стороны выходящие из одной вершины. Противолежащие стороны — несоседние стороны.
Диагональ четырехугольника — отрезок, соединяющий противолежащие вершины четырехугольника.
Периметр четырехугольника — сумма длин всех сторон.
Выпуклый четырехугoльник — четырехугольник, лежащий в одной полуплоскости относительно прямой,содержащей его сторону.
Внешний угол четырехугольника — угол,смежный с углом четырехугольника.

Содержание
  1. Свойства углов и сторон четырехугольника
  2. Виды четырехугольников
  3. Геометрия. Урок 4. Четырехугольники
  4. Определение четырехугольника
  5. Выпуклые четырехугольники
  6. Параллелограмм
  7. Прямоугольник
  8. Квадрат
  9. Трапеция
  10. Примеры решений заданий из ОГЭ
  11. Четырехугольник — виды и свойства с примерами решения
  12. Внутренние и внешние углы четырехугольника
  13. Сумма внутренних углов выпуклого четырёхугольника
  14. Сумма внешних углов выпуклого четырёхугольника
  15. Параллелограмм
  16. Параллелограмм и его свойства
  17. Признаки параллелограмма
  18. Прямоугольник
  19. Признак прямоугольника
  20. Ромб и квадрат
  21. Свойства ромба
  22. Трапеция
  23. Средняя линия треугольника
  24. Средняя линия трапеции
  25. Координаты середины отрезка
  26. Теорема Пифагора
  27. Справочный материал по четырёхугольнику
  28. Пример №1
  29. Признаки параллелограмма
  30. Пример №2 (признак параллелограмма).
  31. Прямоугольник
  32. Пример №3 (признак прямоугольника).
  33. Ромб. Квадрат
  34. Пример №4 (признак ромба)
  35. Теорема Фалеса. Средняя линия треугольника
  36. Пример №5
  37. Пример №6
  38. Трапеция
  39. Пример №7 (свойство равнобедренной трапеции).
  40. Центральные и вписанные углы
  41. Пример №8
  42. Вписанные и описанные четырёхугольники
  43. Пример №9
  44. Пример №10
  45. 📸 Видео

Свойства углов и сторон четырехугольника

Сайт по теме четырехугольники

Свойства углов
1. Сумма углов четырехугольника равна 360°.
2. Сумма внешних углов четырехугольника, взятых по одному при каждой вершине, равна 360°.

Свойства сторон
1. Каждая сторона четырехугольника меньше суммы всех его других сторон.
2. Сумма диагоналей меньше его периметра.

Виды четырехугольников

Сайт по теме четырехугольники

Конспекты по четырехугольникам:

Это конспект по теме «Четырехугольники и его свойства». Выберите дальнейшие действия:

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Геометрия. Урок 4. Четырехугольники

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Сайт по теме четырехугольники

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение четырехугольника
  • Выпуклые четырехугольники
  • Параллелограмм

Видео:Миникурс по геометрии. ЧетырехугольникиСкачать

Миникурс по геометрии. Четырехугольники

Определение четырехугольника

Четырехугольником называется фигура, которая состоит из четырех точек (вершин) и четырех отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться.

Четырехугольники бывают выпуклые ( A B C D ) и невыпуклые ( A 1 B 1 C 1 D 1 ) .

Сайт по теме четырехугольники

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Выпуклые четырехугольники

В задачах ОГЭ встречаются выпуклые четырехугольники, поэтому подробно изучим их.

Смежные стороны – соседние стороны, которые выходят из одной вершины. Пары смежных сторон: A B и A D , A B и B C , B C и C D , C D и A D .

Противолежащие стороны – несмежные стороны (соединяют разные вершины). Пары противолежащих сторон: A B и C D , B C и A D .

Противолежащие вершины – вершины, не являющиеся соседними (лежат друг напротив друга). Пары противолежащих вершин: A и C , B и D .

Диагонали четырехугольника – отрезки, соединяющие противолежащие вершины. A C и B D – диагонали четырехугольника A B C D .

Диагонали выпуклого четырехугольника пересекаются в одной точке.

Площадь произвольного выпуклого четырехугольника можно найти по формуле:

S = 1 2 d 1 d 2 ⋅ sin φ

где d 1 и d 2 – диагонали четырехугольника, φ – угол между диагоналями (острый или тупой – не важно).

Рассмотрим более подробно некоторые виды выпуклых четырехугольников.

Класс параллелограммов : параллелограмм, ромб, прямоугольник, квадрат.

Класс трапеций : произвольная трапеция, прямоугольная трапеция, равнобокая (равнобедренная) трапеция.

Видео:Четырехугольники. Геометрия 8 класс.Скачать

Четырехугольники.  Геометрия 8 класс.

Параллелограмм

Параллелограмм – четырехугольник, у которого противолежащие стороны попарно параллельны.

Свойства параллелограмма:

  • Противолежащие стороны равны.
  • Противоположные углы равны.
  • Диагонали точкой пересечения делятся пополам.
  • Сумма углов, прилежащих к одной стороне, равна 180 ° .
  • Сумма квадратов диагоналей равна сумме квадратов сторон. d 1 2 + d 2 2 = 2 ( a 2 + b 2 )

Площадь параллелограмма можно найти по трём формулам.

Как произведение стороны и высоты, проведенной к ней.

Поскольку стороны имеют разные длины, то высоты, которые к ним проведены, тоже будут иметь разные длины.

Как произведение двух смежных (соседних) сторон на синус угла между ними.

Как полупроизведение диагоналей на синус угла между ними.

Ромб – параллелограмм, у которого все стороны равны.

Свойства ромба:

  • Диагонали пересекаются под прямым углом.
  • Диагонали являются биссектрисами углов, из которых выходят.
  • Сохраняются все свойства параллелограмма.

Площадь ромба можно найти по трём формулам.

Как произведение стороны ромба на высоту ромба.

Как квадрат стороны ромба на синус угла между двумя сторонами.

Как полупроизведение диагоналей ромба.

Видео:ГЕОМЕТРИЯ 8 класс: Четырехугольники | Видеоурок с теорией и решением задачиСкачать

ГЕОМЕТРИЯ 8 класс: Четырехугольники | Видеоурок с теорией и решением задачи

Прямоугольник

Прямоугольник – это параллелограмм, у которого все углы равны 90 ° .

Свойства прямоугольника:

  • Диагонали прямоугольника равны.
  • Сохраняются все свойства параллелограмма.

Площадь прямоугольника можно найти по двум формулам:

Как произведение двух смежных (соседних) сторон прямоугольника.

Как полупроизведение диагоналей (так как они обе равны, обозначим их буквой d ) на синус угла между ними.

Видео:Математика 5 класс (Урок№29 - Четырёхугольники.)Скачать

Математика 5 класс (Урок№29 - Четырёхугольники.)

Квадрат

Квадрат – прямоугольник, у которого все стороны равны.

Свойства квадрата:

  • Сохраняет свойства ромба.
  • Сохраняет свойства прямоугольника.

Площадь квадрата можно вычислить по двум формулам:

Как квадрат стороны.

Как полупроизведение квадратов диагоналей (диагонали в квадрате равны).

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Трапеция

Трапеция – это четырехугольник, у которого две стороны параллельны, а две другие нет.

Стороны, которые параллельны друг другу называются основаниями , другие две стороны называются боковыми сторонами .

B C и A D – основания, A B и C D – боковые стороны трапеции A B C D .

Свойства трапеции:

сумма углов, прилежащих к боковой стороне, равна 180 ° .

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

Средняя линия параллельна основаниям. Её длина находится по формуле: m = a + b 2

Площадь трапеции можно найти по двум формулам:

Как полусумму оснований на высоту. Поскольку полусумма оснований есть средняя линия трапеции, можно найти площадь трапеции как произведение средней линии на высоту.

Как полупроизведение диагоналей на синус угла между ними.

Виды трапеций

Прямоугольная трапеция – трапеция, у которой два угла прямые.

Равнобокая (равнобедренная) трапеция – трапеция, у которой боковые стороны равны.

Свойство равнобокой трапеции: углы при основании равны

Видео:Четырехугольники. Вебинар | МатематикаСкачать

Четырехугольники. Вебинар | Математика

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с четырехугольниками

Видео:Логический квест – тест по теме «Четырехугольники», геометрия 8 классСкачать

Логический квест – тест по теме «Четырехугольники», геометрия 8 класс

Четырехугольник — виды и свойства с примерами решения

Содержание:

Четырёхугольник — это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки — сторонами четырёхугольника.

Сайт по теме четырехугольники

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне — противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин — противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области — внутреннюю и внешнюю.

Сайт по теме четырехугольники

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Сайт по теме четырехугольники

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Сайт по теме четырехугольники

Видео:3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов Сайт по теме четырехугольникиуглы Сайт по теме четырехугольникиявляются внешними.

Сайт по теме четырехугольники

Каждый внутренний угол выпуклого четырёхугольника меньше Сайт по теме четырехугольникиГрадусная мера внутреннего угла невыпуклого четырёхугольника может быть больше Сайт по теме четырехугольники

Сайт по теме четырехугольники

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна Сайт по теме четырехугольникиСайт по теме четырехугольники

Сайт по теме четырехугольники

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Сайт по теме четырехугольникиДоказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна Сайт по теме четырехугольники

Сайт по теме четырехугольники

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны. Сайт по теме четырехугольники

Теорема 1. Противоположные стороны параллелограмма конгруэнтны. Сайт по теме четырехугольники

Теорема 2. Противоположные углы параллелограмма конгруэнтны. Сайт по теме четырехугольники

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна Сайт по теме четырехугольникиСайт по теме четырехугольники

Сайт по теме четырехугольники

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам. Сайт по теме четырехугольники

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника. Сайт по теме четырехугольники

Сайт по теме четырехугольники

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны. Сайт по теме четырехугольники

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Сайт по теме четырехугольники

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом. Сайт по теме четырехугольники

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если Сайт по теме четырехугольникито параллелограмм Сайт по теме четырехугольникиявляется ромбом.

Сайт по теме четырехугольники

Доказательство теоремы 1.

Дано: Сайт по теме четырехугольникиромб.

Докажите, что Сайт по теме четырехугольники

Доказательство (словестное): По определению ромба Сайт по теме четырехугольникиПри этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что Сайт по теме четырехугольникиравнобедренный. Медиана Сайт по теме четырехугольники(так как Сайт по теме четырехугольники), является также и биссектрисой и высотой. Т.е. Сайт по теме четырехугольникиТак как Сайт по теме четырехугольникиявляется прямым углом, то Сайт по теме четырехугольники. Аналогичным образом можно доказать, что Сайт по теме четырехугольники

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Сайт по теме четырехугольники

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Сайт по теме четырехугольники

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны. Сайт по теме четырехугольники

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны. Сайт по теме четырехугольники

Сайт по теме четырехугольники

План доказательства теоремы 2

Дано: Сайт по теме четырехугольникиравнобедренная трапеция. Сайт по теме четырехугольники

Докажите: Сайт по теме четырехугольники

Сайт по теме четырехугольники

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если Сайт по теме четырехугольникитогда Сайт по теме четырехугольникиЗапишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку Сайт по теме четырехугольникипроведем параллельную прямую к прямой Сайт по теме четырехугольники

Сайт по теме четырехугольники

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике Сайт по теме четырехугольникичерез точку Сайт по теме четырехугольники— середину стороны Сайт по теме четырехугольникипроведите прямую параллельную Сайт по теме четырехугольникиКакая фигура получилась? Является ли Сайт по теме четырехугольникитрапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Сайт по теме четырехугольникиМожно ли утверждать, что Сайт по теме четырехугольники

Сайт по теме четырехугольники

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине Сайт по теме четырехугольники

Сайт по теме четырехугольники

Доказательство. Пусть дан треугольник Сайт по теме четырехугольникии его средняя линия Сайт по теме четырехугольникиПроведём через точку Сайт по теме четырехугольникипрямую параллельную стороне Сайт по теме четырехугольникиПо теореме Фалеса, она проходит через середину стороны Сайт по теме четырехугольникит.е. совпадает со средней линией Сайт по теме четырехугольникиТ.е. средняя линия Сайт по теме четырехугольникипараллельна стороне Сайт по теме четырехугольникиТеперь проведём среднюю линию Сайт по теме четырехугольникиТ.к. Сайт по теме четырехугольникито четырёхугольник Сайт по теме четырехугольникиявляется параллелограммом. По свойству параллелограмма Сайт по теме четырехугольникиПо теореме Фалеса Сайт по теме четырехугольникиТогда Сайт по теме четырехугольникиТеорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Сайт по теме четырехугольники

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Сайт по теме четырехугольники

Доказательство: Через точку Сайт по теме четырехугольникии точку Сайт по теме четырехугольникисередину Сайт по теме четырехугольникипроведём прямую и обозначим точку пересечения со стороной Сайт по теме четырехугольникичерез Сайт по теме четырехугольники

Сайт по теме четырехугольники

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке Сайт по теме четырехугольникирадиусом 3 единицы. Вычислите значение выражения Сайт по теме четырехугольникиЕсть ли связь между значением данного выражения и координатой точки Сайт по теме четырехугольники

Сайт по теме четырехугольники

Координаты середины отрезка

1) Пусть на числовой оси заданы точки Сайт по теме четырехугольникии Сайт по теме четырехугольникии точка Сайт по теме четырехугольникикоторая является серединой отрезка Сайт по теме четырехугольники

Сайт по теме четырехугольникито Сайт по теме четырехугольникиа отсюда следует, что Сайт по теме четырехугольники

Сайт по теме четырехугольники

2) По теореме Фалеса, если точка Сайт по теме четырехугольникиявляется серединой отрезка Сайт по теме четырехугольникито на оси абсцисс точка Сайт по теме четырехугольникиявляется соответственно координатой середины отрезка концы которого находятся в точках Сайт по теме четырехугольникии Сайт по теме четырехугольники

Сайт по теме четырехугольники

3) Координаты середины отрезка Сайт по теме четырехугольникис концами Сайт по теме четырехугольникии Сайт по теме четырехугольникиточки Сайт по теме четырехугольникинаходятся так:

Сайт по теме четырехугольники

Убедитесь, что данная формула верна в случае, если отрезок Сайт по теме четырехугольникипараллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки Сайт по теме четырехугольникикак показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Сайт по теме четырехугольники

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Сайт по теме четырехугольники

Шаг 4. На сторонах другого квадрата отметьте отрезки Сайт по теме четырехугольникикак показано на рисунке и отрежьте четыре прямоугольных треугольника.

Сайт по теме четырехугольники

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Сайт по теме четырехугольники

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Сайт по теме четырехугольники

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах: Сайт по теме четырехугольники

Сайт по теме четырехугольники

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Сайт по теме четырехугольники

Сайт по теме четырехугольники

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если Сайт по теме четырехугольникито, Сайт по теме четырехугольники— прямоугольный.

Сайт по теме четырехугольники

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа Сайт по теме четырехугольникиявляются Пифагоровыми тройками, то и числа Сайт по теме четырехугольникитакже являются Пифагоровыми тройками.

Видео:ЧетырехугольникиСкачать

Четырехугольники

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

Сайт по теме четырехугольники(рис. 1).

Точки А, В, С, D — вершины четырёхугольника, отрезки АВ, ВС, CD, DA — его стороны. Углы DAB, ABC, BCD, CDA — это углы четырёхугольника. Их также обозначают одной буквой — Сайт по теме четырехугольникиСайт по теме четырехугольники

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой. Сайт по теме четырехугольники

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA — неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ — соседние, а вершины А и С, Сайт по теме четырехугольники, стороны AD и ВС — противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD — диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б — невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Сайт по теме четырехугольники

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: Сайт по теме четырехугольники=40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В Сайт по теме четырехугольники+ CD (по неравенству треугольника). Тогда Сайт по теме четырехугольники. Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) Сайт по теме четырехугольники. Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Сайт по теме четырехугольники

Решение:

Сайт по теме четырехугольники(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично Сайт по теме четырехугольники(АВ CD, ВС-секущая), Сайт по теме четырехугольники(ВС || AD, CD — секущая), Сайт по теме четырехугольники(АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Сайт по теме четырехугольники

Доказательство. Сайт по теме четырехугольникипо стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, Сайт по теме четырехугольникикак внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.Сайт по теме четырехугольники

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник — параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник — параллелограмм.

Сайт по теме четырехугольники

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). Сайт по теме четырехугольникипо трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Сайт по теме четырехугольники Сайт по теме четырехугольникиУглы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие — параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD — не параллелограмм. Сайт по теме четырехугольники

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Сайт по теме четырехугольники

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). Сайт по теме четырехугольникипо двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, Сайт по теме четырехугольникикак внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Сайт по теме четырехугольникиНо углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Сайт по теме четырехугольники

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. Сайт по теме четырехугольникипо двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, Сайт по теме четырехугольникикак вертикальные. Из равенства треугольников следует: ВС= AD и Сайт по теме четырехугольникиНо углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник — параллелограмм.

Чтобы установить, что четырёхугольник — параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Сайт по теме четырехугольники

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и —у треугольники, можно разделить на виды. Прямоугольник — один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике. Сайт по теме четырехугольники

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник — частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Сайт по теме четырехугольники

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Сайт по теме четырехугольникиМожно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что Сайт по теме четырехугольники. Сайт по теме четырехугольникипо трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что Сайт по теме четырехугольники. Поскольку в параллелограмме противоположные углы равны, то: Сайт по теме четырехугольники. По свойству углов четырёхугольника, Сайт по теме четырехугольники

Следовательно, Сайт по теме четырехугольники: 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм — прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, — это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Сайт по теме четырехугольники

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма — ромб.

Сайт по теме четырехугольники

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Сайт по теме четырехугольники

Дано: ABCD — ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать: Сайт по теме четырехугольники

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому Сайт по теме четырехугольники. Сайт по теме четырехугольники

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Сайт по теме четырехугольники

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором Сайт по теме четырехугольники(рис. 96). Докажем, что ABCD— ромб. Сайт по теме четырехугольникипо двум сторонами и углу между ними.

Сайт по теме четырехугольники

Так как ромб — это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, Сайт по теме четырехугольникипо условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм — ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Сайт по теме четырехугольники

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник — это частные виды параллелограмма. Соотношение между видами параллелограммов показано на Сайт по теме четырехугольники

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

Сайт по теме четырехугольники

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Сайт по теме четырехугольники

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Сайт по теме четырехугольники

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки Сайт по теме четырехугольникии Сайт по теме четырехугольникиПроведите с помощью чертёжного угольника и линейки через точки Сайт по теме четырехугольникипараллельные прямые, которые пересекут сторону ВС этого угла в точках Сайт по теме четырехугольникиПри помощи циркуля сравните длины отрезков Сайт по теме четырехугольникиСделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано: Сайт по теме четырехугольники

Сайт по теме четырехугольники

Доказать: Сайт по теме четырехугольники

Доказательство. Проведём через точки Сайт по теме четырехугольникипрямые Сайт по теме четырехугольникипараллельные ВС. Сайт по теме четырехугольникипо стороне и прилежащим к ней углам. У них Сайт по теме четырехугольникипо условию, Сайт по теме четырехугольникикак соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что Сайт по теме четырехугольникии Сайт по теме четырехугольникикак противоположные стороны параллелограммов Сайт по теме четырехугольники

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Сайт по теме четырехугольники

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Сайт по теме четырехугольники

Отложим на луче АС пять равных отрезков: АА,Сайт по теме четырехугольникиПроведём прямую Сайт по теме четырехугольники. Через точки Сайт по теме четырехугольникипроведём прямые, параллельные прямой Сайт по теме четырехугольники. По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN — средняя линия Сайт по теме четырехугольники, так как точки М и N — середины сторон АВ и ВС.

Сайт по теме четырехугольники

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: Сайт по теме четырехугольники(рис. 122), AD = BD, СЕ= BE.

Сайт по теме четырехугольники

Доказать: Сайт по теме четырехугольники

Доказательство. 1) Пусть DE- средняя линия Сайт по теме четырехугольники. Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: Сайт по теме четырехугольники. По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно, Сайт по теме четырехугольники

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Сайт по теме четырехугольники

Поэтому Сайт по теме четырехугольники. КР— средняя линия треугольника ADC. Поэтому КР || АС и Сайт по теме четырехугольники

Получаем: MN || АС и КР || АС, отсюда MN || КРСайт по теме четырехугольники, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Сайт по теме четырехугольники

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами — параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие — АВ и CD — непараллельны. Такой четырёхугольник — трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Сайт по теме четырехугольники

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие — непараллельны.

Сайт по теме четырехугольники

Параллельные стороны трапеции называются её основаниями, а непараллельные — боковыми сторонами. На рисунке 144 AD и ВС — основания трапеции, АВ и CD — боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP — равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) — прямоугольная, поскольку Сайт по теме четырехугольники= 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF — средняя линия трапеции ABCD, так как точки Е и F — середины боковых сторон АВ и CD.

Сайт по теме четырехугольники

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD — трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать: Сайт по теме четырехугольники

Сайт по теме четырехугольники

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. Сайт по теме четырехугольникиno стороне и прилежащим к ней углам. У них CF = FD по условию, Сайт по теме четырехугольникикак вертикальные, Сайт по теме четырехугольникивнутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Сайт по теме четырехугольники

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и Сайт по теме четырехугольникиравнобедренный. Поэтому Сайт по теме четырехугольникисоответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Сайт по теме четырехугольники

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Сайт по теме четырехугольники

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом. Сайт по теме четырехугольникиСайт по теме четырехугольники

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: Сайт по теме четырехугольники— вписанный в окружность с центром О (рис. 188 — 190).

Доказать: Сайт по теме четырехугольники

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом Сайт по теме четырехугольники. По свойству внешнего угла треугольника, Сайт по теме четырехугольникиСайт по теме четырехугольники— равнобедренный (ОВ= OA = R). Поэтому Сайт по теме четырехугольникиизмеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:Сайт по теме четырехугольники

Из доказанного в первом случае следует, что Сайт по теме четырехугольникиизмеряется половиной дуги AD, a Сайт по теме четырехугольники— половиной дуги DC. Поэтому Сайт по теме четырехугольникиизмеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда: Сайт по теме четырехугольники

Сайт по теме четырехугольники

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, — прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°. Сайт по теме четырехугольники

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). Сайт по теме четырехугольникикак вписанные, опирающиеся на дугу АС (следствие 1). Поэтому Сайт по теме четырехугольники, так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно, Сайт по теме четырехугольники

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, Сайт по теме четырехугольники(рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около Сайт по теме четырехугольники(рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо: Сайт по теме четырехугольники

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность. Сайт по теме четырехугольники

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность — описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Сайт по теме четырехугольники

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Сайт по теме четырехугольники

Доказать: Сайт по теме четырехугольники

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует: Сайт по теме четырехугольники

Тогда Сайт по теме четырехугольники

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда Сайт по теме четырехугольники

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник — вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225). Сайт по теме четырехугольники

Докажем, что Сайт по теме четырехугольники. В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, Сайт по теме четырехугольники. По свойству равнобокой трапеции, Сайт по теме четырехугольники

Тогда Сайт по теме четырехугольникии, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Сайт по теме четырехугольники

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Сайт по теме четырехугольники

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения Сайт по теме четырехугольникицентры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника Сайт по теме четырехугольникивписанного в окружность. Действительно,

Сайт по теме четырехугольники

Следовательно, четырёхугольник Сайт по теме четырехугольники— вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Сайт по теме четырехугольники

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD — вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Сайт по теме четырехугольники

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.

Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

📸 Видео

Подготовка к контрольной работе. Четырехугольники. Геометрия 8 класс.Скачать

Подготовка к контрольной работе. Четырехугольники. Геометрия 8 класс.

Четырехугольники на ЕГЭ - bezbotvyСкачать

Четырехугольники на ЕГЭ - bezbotvy

ЧЕТЫРЕХУГОЛЬНИКИ и их свойства+доказательство теорем/8 класс.Скачать

ЧЕТЫРЕХУГОЛЬНИКИ и их свойства+доказательство теорем/8 класс.

Геометрия 10 класс (Урок№2 - Четырехугольники.)Скачать

Геометрия 10 класс (Урок№2 - Четырехугольники.)

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

ЧЕТЫРЕХУГОЛЬНИК и его элементы. §1 геометрия 8 классСкачать

ЧЕТЫРЕХУГОЛЬНИК и его элементы. §1 геометрия 8 класс

вписанный и описанный четырехугольникСкачать

вписанный и описанный четырехугольник

ЧЕТЫРЕХУГОЛЬНИК 8 класс РЕШЕНИЕ ЗАДАЧ АтанасянСкачать

ЧЕТЫРЕХУГОЛЬНИК 8 класс РЕШЕНИЕ ЗАДАЧ Атанасян

Виды четырёхугольниковСкачать

Виды четырёхугольников
Поделиться или сохранить к себе: