Определение: Векторы называются коллинеарными, если они расположены на одной или параллельных прямых.
Нулевой вектор коллинеарен любому вектору.
- Коллинеарны ли векторы? Примеры.
- Коллинеарность векторов, условия коллинеарности векторов.
- Условия коллинеарности векторов
- Примеры задач на коллинеарность векторов
- Примеры задач на коллинеарность векторов на плоскости
- Примеры задач на коллинеарность векторов в пространстве
- Коллинеарные векторы
- Условия коллинеарности векторов
- Примеры задач
- 🎦 Видео
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Коллинеарны ли векторы? Примеры.
Задача №1 Дан вектор а= и b=. При каких n и m вектора коллинеарны?
Решение:
Вектора коллинеарны, когда их соответствующие координаты пропорциональны. Значит можем составить пропорцию: 15/18 = m/12 = 1/n, откуда находим неизвестные n = 1,2 m = 10
Видео:Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать
Коллинеарность векторов, условия коллинеарности векторов.
Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами (рис. 1).
рис. 1 |
Видео:Коллинеарность векторовСкачать
Условия коллинеарности векторов
Два вектора будут коллинеарны при выполнении любого из этих условий:
Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что
N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.
N.B. Условие 3 применимо только для трехмерных (пространственных) задач.
Доказательство третего условия коллинеарности
Пусть есть два коллинеарные вектора a = < ax ; ay ; az > и b = < nax ; nay ; naz >. Найдем их векторное произведение
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Примеры задач на коллинеарность векторов
Примеры задач на коллинеарность векторов на плоскости
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:
ax | = | ay | . |
bx | by |
Вектора a и b коллинеарны т.к. | 1 | = | 2 | . |
4 | 8 |
Вектора a и с не коллинеарны т.к. | 1 | ≠ | 2 | . |
5 | 9 |
Вектора с и b не коллинеарны т.к. | 5 | ≠ | 9 | . |
4 | 8 |
Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:
Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то
n = | by | = | 6 | = 2 |
ay | 3 |
Найдем значение n a :
Так как b = n a , то вектора a и b коллинеарны.
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности
ax | = | ay | . |
bx | by |
3 | = | 2 | . |
9 | n |
Решим это уравнение:
n = | 2 · 9 | = 6 |
3 |
Ответ: вектора a и b коллинеарны при n = 6.
Примеры задач на коллинеарность векторов в пространстве
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае пространственной задачи для векторов a и b примет вид:
ax | = | ay | = | az | . |
bx | by | bz |
Вектора a и b коллинеарны т.к. 1 4 = 2 8 = 3 12
Вектора a и с не коллинеарны т.к. 1 5 = 2 10 ≠ 3 12
Вектора с и b не коллинеарны т.к. 5 4 = 10 8 ≠ 12 12
Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:
Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то
n = | by | = | 6 | = 2 |
ay | 3 |
Найдем значение n a :
Так как b = n a , то вектора a и b коллинеарны.
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности
ax | = | ay | = | az | . |
bx | by | bz |
3 | = | 2 | = | m |
9 | n | 12 |
Из этого соотношения получим два уравнения:
3 | = | 2 |
9 | n |
3 | = | m |
9 | 12 |
Решим эти уравнения:
n = | 2 · 9 | = 6 |
3 |
m = | 3 · 12 | = 4 |
9 |
Ответ: вектора a и b коллинеарны при n = 6 и m = 4.
Видео:Задача 1. Коллинеарность векторов. Высшая математика.Скачать
Коллинеарные векторы
В данной публикации мы рассмотрим, какие векторы называются коллинеарными и перечислим условия, при которых они являются таковыми. Также разберем примеры решения задач по этой теме.
Видео:ВЕКТОРЫ решение задач 9 класс АтанасянСкачать
Условия коллинеарности векторов
Векторы, лежащие на одной или нескольких параллельных прямых, называются коллинеарными.
Два вектора коллинеарны, если выполняется одно из условий ниже:
1. Существует такое число n, при котором .
2. Отношения координат векторов равны. Но данное условие не может применяться, если одна из координат равняется нулю.
3. Векторное произведение равно нулевому вектору (применимо только для трехмерных задач).
Видео:Понятие вектора. Коллинеарные вектора. 9 класс.Скачать
Примеры задач
Задание 1
Даны векторы , и . Определим, есть ли среди них коллинеарные.
Решение:
У заданных векторов нет нулевых координат, значит мы можем применить второе условие коллинеарности.
Следовательно, коллинеарными являются только векторы a и c .
Задание 2
Выясним, при каком значении n векторы и коллинеарны.
Решение:
Т.к. среди координат нет нулей, согласно второму условию мы можем составить их соотношение, чтобы рассчитать недостающий элемент.
🎦 Видео
Коллинеарные векторы.Скачать
Геометрия 10 класс (Урок№18 - Компланарные векторы. Векторный метод решения задач.)Скачать
§15 Коллинеарность векторовСкачать
Решение типовых задач по векторной алгебреСкачать
Выразить векторы. Разложить векторы. Задачи по рисункам. ГеометрияСкачать
Математика без Ху!ни. Смешанное произведение векторовСкачать
43. Компланарные векторыСкачать
Координаты вектора в пространстве. 11 класс.Скачать
КООРДИНАТЫ ВЕКТОРА В ПРОСТРАНСТВЕ решение задачСкачать
18+ Математика без Ху!ни. Векторное произведение.Скачать
ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать
Задача 2. Коллинеарны ли векторы с1 и с2, построенные по векторам a и b?Скачать
Вычитание векторов. 9 класс.Скачать