- Преобразования декартовой системы координат с примерами решения
- Преобразования декартовой системы координат
- Параллельный перенос и поворот системы координат
- Полярные координаты. Замечательные кривые
- Параллельный перенос, поворот плоскости и подобные треугольники
- Корзина
- Параллельный перенос
- Поворот плоскости вокруг точки на угол
- Подобные треугольники
- Параллельный перенос
- Параллельный перенос
- Параллельный перенос, поворот плоскости и подобные треугольники
- Корзина
- Параллельный перенос
- Поворот плоскости вокруг точки на угол
- Подобные треугольники
- 💥 Видео
Видео:9 класс, 32 урок, Параллельный переносСкачать
Преобразования декартовой системы координат с примерами решения
Содержание:
Видео:Координаты вектора. 9 класс.Скачать
Преобразования декартовой системы координат
Параллельный перенос и поворот системы координат
1. Параллельный перенос системы координат. Пусть на плоскости две декартовы системы координат, причем соответствующие оси параллельны и сонаправлены (Рис.46):
Рис. 46. Параллельный перенос одной системы координат относительно другой системы.
Систему координат
Пример:
Дана точка М(3;2) и начало новой системы координат Вычислить положение точки М в новой системе отсчета.
Решение:
Используя формулы, определяющие параллельный перенос одной системы отсчета относительно другой, получим Следовательно, точка М в новой системе отсчета имеет координаты М(4; -1).
2. Поворот системы координат. Пусть даны две системы координат (старая и новая), имеющие общее начало отсчета и повернутые относительно друг друга на угол (Рис. 47):
Рис. 47. Поворот одной системы координат относительно другой системы с общим началом координат двух систем.
Получим формулы, связывающие старые и новые координаты произвольной точки М(х; у). Из рисунка видно, что в новой системе координат координаты точки равны а координаты этой точки в старой системе координат равны Таким образом формулы перехода от новых координат произвольной точки М к старым имеет вид В матричном виде эти равенства можно записать в виде где матрица перехода
Найдем обратное преобразование системы координат, найдем матрицу обратную к матрице А:
Найдем алгебраические дополнения всех элементов
Запишем обратную матрицу
Определение: Унитарными преобразованиями называются такие преобразования, для которых определитель матрицы преобразования равен 1.
Определение: Ортогональными преобразованиями называются такие преобразования, для которых обратная матрица к матрице преобразования совпадает с транспонированной матрицей преобразования.
Таким образом, имеем Следовательно, формулы перехода от старой системы отсчета к новой системе отсчета имеют вид:
Пример:
Найти координаты точки М(1; 2) в новой системе координат, повернутой относительно старой системы отсчета на угол
Решение:
Воспользуемся полученными формулами т.е. в новой системе координат точка имеет координаты М(2; -1).
Рассмотрим применение преобразования координат:
а) Преобразовать уравнение параболы к каноническому виду. Проведем параллельный перенос системы координат получим Выберем начало отсчета новой системы координат так, чтобы выполнялись равенства тогда уравнение принимает вид Выполним поворот системы координат на угол тогда Подставим найденные соотношения в уравнение параболы где параметр параболы
Пример:
Преобразовать уравнение параболы к каноническому виду.
Решение:
Найдем начало отсчета новой системы координат после параллельного переноса т.е. точка — начало координат новой системы отсчета. В этой системе уравнение параболы имеет вид Проведем поворот системы отсчета на угол тогда
следовательно, параметр параболы р = 1/4.
б) Выяснить, какую кривую описывает функция
Проведем следующее преобразование Производя параллельный перенос системы координат, вводя обозначение
и новые координаты получим уравнение которое описывает равнобочную гиперболу.
Полярные координаты. Замечательные кривые
Пусть полярная ось совпадает с осью абсцисс Ох, а начало полярной оси (полюс полярной системы координат) совпадает с началом координат декартовой системы отсчета (Рис. 48). Любая точка М(х;у) в полярной системе координат характеризуется длиной радиус-вектора, соединяющего эту точку с началом отсчета и углом между радиус-вектором и полярной осью (угол отсчитывается против часовой стрелки).
Рис. 48. Полярная система координат.
Главными значениями угла являются значения, лежащие в интервале Из рисунка видно, что декартовы и полярные координаты связаны формулами
Рассмотрим замечательные кривые в полярной системе координат:
1. Спираль Архимеда где число (Рис. 49). Для построения кривой в полярной системе координат, разобьем декартову плоскость лучами с шагом по углу и на каждом луче отложим ему соответствующее значение р.
Рис. 49. Спираль (улитка) Архимеда.
2. Уравнение окружности: уравнение описывает окружность с центром в точке A(R; 0) и радиусом R (Рис. 50). В полярной системе координат уравнение принимает вид
Рис. 50. Окружность с центром в точке A(R; 0) и радиусом R.
3. Уравнение описывает окружность с центром в т. А(0; R) и радиусом R (Рис. 51). В полярной системе координат уравнение принимает вид
Рис. 51. Окружность с центром в точке А(0; R) и радиусом R.
4. Кардиоиды:
Рис. 52. Кардиоида
Рис. 53. Кардиоида
Аналогично выглядят кардиоиды но они вытянуты вдоль оси абсцисс Ох.
5. Петля: Величина равна нулю при
Для первого корня у = 0, а для второго и третьего — у = 9 . Следовательно, петля имеет вид
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Бесконечно малые и бесконечно большие функции
- Замечательные пределы
- Непрерывность функций и точки разрыва
- Точки разрыва и их классификация
- Экстремум функции
- Методы решения систем линейных алгебраических уравнений (СЛАУ)
- Скалярное произведение и его свойства
- Векторное и смешанное произведения векторов
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Геометрия 9 класс (Урок№29 - Параллельный перенос.)Скачать
Параллельный перенос, поворот плоскости и подобные треугольники
Корзина
Теоретический урок по предмету математики для решения задач по теме «Параллельный перенос, поворот плоскости и подобные треугольники».
Содержание данной онлайн страницы электронного справочника для школьников:
- – тема «Параллельный перенос» представлена на примере решения задач 145 — 148;
- – в контрольных работах с номерами 149 — 154 данной рабочей тетради по математике рассматривается поворот плоскости вокруг точки на угол;
- – повторение курса геометрии 9 класса в решениях приведено на примере заданий 155 — 173: углы треугольника, площадь треугольника через катеты и гипотенузу, вычисление радиуса описанной окружности, стороны ромба, подобные треугольники.
Видео:63 Окружность и параллельный переносСкачать
Параллельный перенос
Определение:
Параллельным переносом на вектор называется отображение плоскости на себя, при котором каждая точка M отображается в такую точку M1, что два вектора равны
=
Задача 145.
вектор
A → A1 : =
B → B1 : =
Теорема:
При параллельном переносе на вектор сохраняется расстояние между точками, т.е. параллельный перенос – движение.
f – параллельный перенос на вектор
M M1
N N1
Доказать:
Точка M переводится движением в точку M1 с условием, что два вектора равны: M M1: = MM1
Точка N переводится движением в точку N1 с условием, что два вектора равны: N N1: = NN1
Следовательно, полученные отрезки параллельны MM1 || NN1 и построенные отрезки равны MM1 = NN1
Значит, четырехугольник MM1N1N – параллелограмм.
Поэтому MN = M1N1, значит f – движение.
Задача 146.
A A1:
=
B B1:
=
C C1:
=
A A1: =
B B1:
=
C C1:
=
***
Задача 147.
точка D лежит на AC: D AC
точка C лежит на AD: C AD
BC B1D
б) Доказать: ABB1D – равнобедренная трапеция
1) От точки B проведем прямую a, параллельную вектору : a ||
2) Точка B переводится движением в точку B1
=
3) Проведем прямую B1D, параллельную отрезку BC:
Рассмотрим четырехугольник BB1DC.
Т.к. основания BB1 || CD и боковые стороны BC || BD параллельны, то BB1DC – параллелограмм (по определению)
По свойству параллелограмма:
основания BB1 = CD и боковые стороны BC = BD равны, но AB = BC, тогда AB = B1D
Т.к. BB1 || AD параллельны и AB B1D не параллельны, следовательно, ABB1D – трапеция (по определению).
Т.к. AB = B1D, то ABB1D – равнобедренная трапеция.
Задача 148.
Дано:
вектор
окр (O;R) окр (O1;R1)
ΔABC ΔA1B1C1
EFPQ E1F1P1Q1
как показано на рисунке.
Видео:11 класс, 12 урок, Параллельный переносСкачать
Поворот плоскости вокруг точки на угол
Определение:
Поворотом плоскости вокруг точки O на угол α называется такое отображение плоскости на себя, при котором каждая точка M отображается в такую точку M1, что угол поворота
MOM1 = α и OM1 = OM.
O – центр поворота
α – угол поворота
Задача 149.
Дано:
α = 75° (против часовой стрелки)
O – центр поворота
1) A A1;
AOA1 = 75°
2) B B1;
BOB1 = 75°
Теорема:
Поворот является движением.
f – поворот
α – угол поворота (против часовой стрелки)
точка O – центр поворота
Тогда треугольники равны ΔOMN = ΔOM1N1 по двум сторонам и углу между ними:
MON = M1ON1
Тогда MN = M1N1, значит, f – движение.
Задача 150.
точка O – центр поворота
α = 180°
1) A A1;
AOA1 = 180°
2) B B1;
BOB1 = 180°
Задача 151.
точка A – центр поворота
α = 160° (против часовой стрелки)
1) B B1;
BAB1 = 160°
2) C C1;
CAC1 = 160°
Задача 152.
точка O – центр поворота
Построить:
1) A A1;
AOA1 = 120°
2) B B1;
BOB1 = 120°
Задача 153.
точка C – центр окружности (C; R)
точка O – центр поворота
угол поворота α = 60° (против часовой стрелки)
а) точка C и точка O не совпадают
б) точка C и точка O совпадают
Построить:
1) проведем луч CO
2) C C1;
COC1 = 60°
Т.к. точка О – центр поворота и точка С – центр окружности совпадают, то окружности (C;R) и (C1;R) будут тоже совпадать.
Задача 154.
Δ ABC – равнобедренный, равносторонний
D – точка пересечения биссектрис
D – центр поворота
угол поворота α = 120°
ΔABC ΔABC
Т.к. Δ ABC – правильный, то все углы в нем равны 60°.
Т.к. точка D – центр описанной и вписанной окружности, то
Δ ABD = Δ BDC = Δ DAC (по трем сторонам).
Следовательно, что ADB = BDC = CDA
A B
B C
C A
Таким образом, Δ ABC отображается на себя.
Повторение.
Задача 155.
ABC : BCA : CAB = 3 : 7 : 8
Найти: наибольший угол треугольника
Пусть x – коэффициент пропорциональности. Зная, что сумма углов в треугольнике равна 180°, составим и решим уравнение:
3x + 7x + 8x = 180
Наибольший угол CAB = 8 • 10 = 80°
Задача 156.
треугольник ΔABC – равнобедренный,
один угол больше другого:
ABC > BAC на 60°
Найти: угол при основании треугольника
Пусть x° – угол при основании треугольника. Зная, что сумма углов в треугольнике составляет 180°, составим и решим уравнение:
(x + 60°) + x + x = 180°
Значит, BAC = 40°.
Задача 157.
треугольник ΔABC – прямоугольный
c = 26 см – гипотенуза
Найти: больший катет b
Пусть x – коэффициент пропорциональности. По теореме Пифагора составим и решим уравнение:
(5x) 2 + (12x) 2 = 26 2
25x 2 + 144x 2 = 676
b = 12 • 2 = 24 (см)
Задача 158.
C = 90°
c = 13 – гипотенуза
По теореме Пифагора получаем:
a = = = = 12
Тогда площадь треугольника
SΔABC = • ab = =
= 30 (квадратных единиц)
Задача 159.
треугольник ΔABC – равнобедренный,
C = 90°
c = 4 – гипотенуза
Найти: площадь треугольника SΔABC = ?
SΔABC = • ab
Т.к. Δ ABC – равнобедренный, то углы при основании по 45° и катеты равны a = b.
По теореме Пифагора получаем:
Тогда (4 ) 2 = 2a 2
Тогда площадь треугольника
SΔABC = • ab = =
= 8 (квадратных единиц)
Задача 160.
A = 90°
a = 6
Найти: радиус описанной окружности R = ?
Т.к. AH – медиана, то CH = c
По теореме Пифагора получаем:
Тогда CH = c = = 5 (ед)
Точка H – центр описанной окружности
Т.к. R = AH, то R = AH = CH = 5 ед.
Задача 161.
C = 90°
соотношение острых углов
ABC : CAB = 1 : 2
AC = 4
Найти: радиус описанной окружности R = ?
Пусть x – коэффициент пропорциональности. Зная, что сумма углов в треугольнике составляет 180°, составим и решим уравнение:
Тогда CAB = 30°,
ABC = 2 • 30° = 60°
Следовательно, BC = AB
По теореме Пифагора получаем:
AC 2 + = AB 2
AC 2 = AB 2
AB 2 = = 64
R = AD = BD = 8 : 2 = 4 (ед)
Задача 162.
C = 90°
радиус описанной окружности
Тогда AB = 2,5 • 2 = 5
По теореме Пифагора получаем:
AC = = = = 4 (ед)
Задача 163.
C = 90°
tg A =
0,6 = ; AC = 3 • = 5 (ед)
Задача 164.
A = 90°
Найти: ABC = ?
Решение:
Т.к. AH = AC, то Δ AHC – равнобедренный.
Точка H – радиус вписанной окружности, поэтому AH = CH, но AH = AC, следовательно, AH = CH = AC.
Тогда Δ AHC – равносторонний.
Значит, HAC = AHC = HCA = 60°.
ABC = 180° – (90° + 60°) = 30°.
Задача 165.
треугольник Δ ABC – правильный, равносторонний,
SΔABC = кв.ед.
Найти: длину биссектрисы BH = ?
Т.к. Δ ABC – правильный, то все углы по 60°.
Рассмотрим Δ ABC – равнобедренный, где
BAC = BCA = 60°.
Тогда BH – медиана, высота.
Значит, перпендикулярны отрезки BH AC.
Рассмотрим треугольники Δ ABH и Δ BHC.
AB = BC, по условию.
AH = CH, BH – медиана.
Значит, треугольники равны Δ ABH = Δ BHC.
Т.е. SΔABH = SΔABC = • = (кв.ед.)
SΔABH = AH • BH
Рассмотрим треугольник Δ ABH.
Т.к. BH – биссектриса, то угол ABH = 30°, поэтому
AH = AB
SΔABH = AB • BH =
AB • BH = (*)
По теореме Пифагора получаем:
AB 2 = AH 2 + BH 2
AB 2 = AB 2 + BH 2
BH 2 = AB 2
BH = AB (**)
Используя результат (**) в уравнении (*), получаем
AB • AB =
AB 2 =
AB =
Тогда AB • BH = • BH =
Задача 166.
треугольник Δ ABC – правильный, равносторонний,
радиус описанной окружности
R =
Найти: площадь треугольника
Рассмотрим Δ ABO (AO = BO = R) Δ ABO – равнобедренный.
Проведем из вершины O к AB высоту OH.
Рассмотрим Δ AOH, где AHO = 90°.
Т.к. HAO = 30°, то OH = AO OH = R
OH = • =
По теореме Пифагора получаем:
OH 2 + AH 2 = OA 2
+ AH 2 = ( ) 2 + AH 2 =
=
AH 2 = – = AH = =
Тогда площадь треугольника
SΔAOH = AH • OH = • • = =
Следовательно, SΔABO = 2 • SΔAOH = 2 • = (кв.ед.)
Тогда площадь треугольника
SΔABC = 3 • SΔABO = 3 • = = 2 = 2,25 (кв.ед.)
Задача 167.
Площадь ромба SABCD = 384
Соотношение диагоналей ромба:
Найти: сторону ромба AB = ?
SABCD = AC • BD
Пусть x – коэффициент пропорциональности. Тогда
SABCD = 3x • 4x
Следовательно, диагональ BD = 4x = 4 • 8 = 32
AC = 3x = 3 • 8 = 24
Поэтому половина диагонали AO = AC = • 24 = 12
BO = BD = • 32 = 16
По теореме Пифагора получаем:
AO 2 + BO 2 = AB 2
Сторона ромба AB = = = 20
Задача 168.
треугольник Δ ABD – равнобедренный,
основание AD = 16
Найти: площадь треугольника
SΔABD = AD • BH
Проведем высоту BH к основанию AD.
По свойству равнобедренного треугольника:
BH – медиана, биссектриса, высота.
Т.к. BH – медиана, то AH = DH = 16 : 2 = 8 (ед.)
Рассмотрим треугольник Δ ABH, где угол AHB = 90°.
По теореме Пифагора получаем:
AB 2 = AH 2 + BH 2
BH = = = = 6 (ед.)
Тогда площадь треугольника
SΔABD = AD • BH = •16 • 6 = 48 (кв.ед.)
Ответ: площадь треугольника SΔABD = 48 кв.ед.
Задача 169.
треугольник Δ ABC –равнобедренный,
основание AC больше высоты BH на 15: AC > BH на 15
Найти: основание AC = ?
Т.к. треугольник Δ ABC –равнобедренный, то BH – высота, медиана, биссектриса.
Тогда AC = AH + CH = AH + AH = 2 AH
Рассмотрим Δ ABH – прямоугольный.
Пусть AC = (x) ед. AH = ( ) ед.
Тогда AB = (x – 15) ед. (по условию).
По теореме Пифагора решим уравнение:
(x – 15) 2 = ( ) 2 + 15 2 x 2 – 30x + 225 = + 225
4 (x 2 – 30x) = x 2
4x 2 – 120x = x 2
3x 2 – 120x = 0 | : x
Таким образом, 40 ед. – длина основания.
Ответ: AC = 40 ед.
Видео:Параллельный перенос. Симметрия. Поворот | МатематикаСкачать
Подобные треугольники
Задача 170.
треугольник Δ ABC, два угла
A = 54°
B = 18°
CH – биссектриса угла C
Доказать: подобие треугольников
Δ BHC Δ ABC
C = 180° – ( A + B)
C = 180° – (54° + 18°) = 108°
Т.к. CH – биссектриса угла C, то
BCH = HCA = 108° : 2 = 54°
Рассмотрим Δ BHC
HBC = B = 18°
BCH = A = 54°
Тогда CHB = C = 108°
Поэтому треугольники подобны Δ BHC Δ ABC.
Задача 171.
верхнее основание BC = 4 см
нижнее основание AD = 10 см
диагональ BD = 8 см
часть диагонали BO = ?
соотношение периметров треугольников
= ?
Углы равны CBO = ODA как накрест лежащие при параллельных прямых BC и AD и секущей BD.
Углы равны BCO = OAD как накрест лежащие при параллельных прямых BC и AD и секущей AC.
Тогда треугольники подобны Δ BCO Δ AOD.
= = = =
= . Тогда 4AO = 10BO BO = AO
= = 0,4 = k
Пусть BO = x, AO = 8 – x. Тогда 10x = 4 • (8 – x)
x = 2 (см)
Следовательно, BO = 2 см.
= k = 0,4
Ответ: BO = 2 см, = 0,4.
Задача 172.
ΔABC ΔA1B1C1 ,
периметр треугольника:
P (ΔABC) = 12 +16 + 20 = 48 (дм)
Т.к. треугольники подобны, то
= =
= = = k (*)
Тогда соотношение периметров треугольников
= k (**)
Из равенств (*) и (**) следует
=
=
B1C1 = = 20 (дм)
Тогда =
=
A1B1 = = 15 (дм)
Задача 173.
ABCD – трапеция,
стороны трапеции пересекаются в точке M:
Рассмотрим треугольники ΔAMD и ΔBMC:
BAD = MBC, как соответственные при параллельных прямых BC и AD и секущей AB.
MCB = MDA, как соответственные при параллельных прямых BC и AD и секущей CD.
Тогда, по первому признаку подобия треугольников:
треугольники подобны Δ AMD Δ BMC.
= =
= ,
но AM = AB + BM = 3,9 + BM
8 • BM = 5 (3,9 + BM)
= ,
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Параллельный перенос
Параллельный перенос — это преобразование плоскости, при котором точки смещаются в одном и том же направлении на одно и то же расстояние.
Строгое определение параллельного переноса даётся либо через декартовы координаты, либо через вектор.
1) Введём на плоскости декартовы координаты x, y.
Параллельный перенос — это такое преобразование фигуры F, при котором её произвольная точка (x;y) переходит в точку (x+a; y+b), где a и b — некоторые числа, одинаковые для всех точек (x;y) фигуры F.
Формулы параллельного переноса
Если при параллельном переносе точка A(x;y) переходит в точку A1(x1;y1)
то параллельный перенос задаётся формулами:
Говорят также, что A1 является образом точки A при параллельном переносе на вектор (a; b). Точка A называется прообразом.
2) Параллельный перенос на данный вектор ā называется отображение плоскости на себя, при котором каждая точка A отображается в такую точку A1, то вектор AA1 равен вектору ā:
Свойства параллельного переноса
1) Параллельный перенос есть движение (то есть параллельный перенос сохраняет расстояние).
2) При параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние.
3) При параллельном переносе каждая прямая переходит в параллельную ей прямую (или в себя).
4) Каковы бы ни были точки A и A1, существует единственный параллельный перенос, при котором точка A переходит в точку A1.
В алгебре параллельный перенос широко используется для построения графиков функций.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Параллельный перенос
Параллельный перенос — это преобразование плоскости, при котором точки смещаются в одном и том же направлении на одно и то же расстояние.
Строгое определение параллельного переноса даётся либо через декартовы координаты, либо через вектор.
1) Введём на плоскости декартовы координаты x, y.
Параллельный перенос — это такое преобразование фигуры F, при котором её произвольная точка (x;y) переходит в точку (x+a; y+b), где a и b — некоторые числа, одинаковые для всех точек (x;y) фигуры F.
Формулы параллельного переноса
Если при параллельном переносе точка A(x;y) переходит в точку A1(x1;y1)
то параллельный перенос задаётся формулами:
Говорят также, что A1 является образом точки A при параллельном переносе на вектор (a; b). Точка A называется прообразом.
2) Параллельный перенос на данный вектор ā называется отображение плоскости на себя, при котором каждая точка A отображается в такую точку A1, то вектор AA1 равен вектору ā:
Свойства параллельного переноса
1) Параллельный перенос есть движение (то есть параллельный перенос сохраняет расстояние).
2) При параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние.
3) При параллельном переносе каждая прямая переходит в параллельную ей прямую (или в себя).
4) Каковы бы ни были точки A и A1, существует единственный параллельный перенос, при котором точка A переходит в точку A1.
В алгебре параллельный перенос широко используется для построения графиков функций.
Видео:Центростремительное ускорение. 9 класс.Скачать
Параллельный перенос, поворот плоскости и подобные треугольники
Корзина
Теоретический урок по предмету математики для решения задач по теме «Параллельный перенос, поворот плоскости и подобные треугольники».
Содержание данной онлайн страницы электронного справочника для школьников:
- – тема «Параллельный перенос» представлена на примере решения задач 145 — 148;
- – в контрольных работах с номерами 149 — 154 данной рабочей тетради по математике рассматривается поворот плоскости вокруг точки на угол;
- – повторение курса геометрии 9 класса в решениях приведено на примере заданий 155 — 173: углы треугольника, площадь треугольника через катеты и гипотенузу, вычисление радиуса описанной окружности, стороны ромба, подобные треугольники.
Видео:Понятие вектора. Коллинеарные вектора. 9 класс.Скачать
Параллельный перенос
Определение:
Параллельным переносом на вектор называется отображение плоскости на себя, при котором каждая точка M отображается в такую точку M1, что два вектора равны
=
Задача 145.
вектор
A → A1 : =
B → B1 : =
Теорема:
При параллельном переносе на вектор сохраняется расстояние между точками, т.е. параллельный перенос – движение.
f – параллельный перенос на вектор
M M1
N N1
Доказать:
Точка M переводится движением в точку M1 с условием, что два вектора равны: M M1: = MM1
Точка N переводится движением в точку N1 с условием, что два вектора равны: N N1: = NN1
Следовательно, полученные отрезки параллельны MM1 || NN1 и построенные отрезки равны MM1 = NN1
Значит, четырехугольник MM1N1N – параллелограмм.
Поэтому MN = M1N1, значит f – движение.
Задача 146.
A A1:
=
B B1:
=
C C1:
=
A A1: =
B B1:
=
C C1:
=
***
Задача 147.
точка D лежит на AC: D AC
точка C лежит на AD: C AD
BC B1D
б) Доказать: ABB1D – равнобедренная трапеция
1) От точки B проведем прямую a, параллельную вектору : a ||
2) Точка B переводится движением в точку B1
=
3) Проведем прямую B1D, параллельную отрезку BC:
Рассмотрим четырехугольник BB1DC.
Т.к. основания BB1 || CD и боковые стороны BC || BD параллельны, то BB1DC – параллелограмм (по определению)
По свойству параллелограмма:
основания BB1 = CD и боковые стороны BC = BD равны, но AB = BC, тогда AB = B1D
Т.к. BB1 || AD параллельны и AB B1D не параллельны, следовательно, ABB1D – трапеция (по определению).
Т.к. AB = B1D, то ABB1D – равнобедренная трапеция.
Задача 148.
Дано:
вектор
окр (O;R) окр (O1;R1)
ΔABC ΔA1B1C1
EFPQ E1F1P1Q1
как показано на рисунке.
Видео:Геометрия и группы. Алексей Савватеев. Лекция 2.3. Параллельный переносСкачать
Поворот плоскости вокруг точки на угол
Определение:
Поворотом плоскости вокруг точки O на угол α называется такое отображение плоскости на себя, при котором каждая точка M отображается в такую точку M1, что угол поворота
MOM1 = α и OM1 = OM.
O – центр поворота
α – угол поворота
Задача 149.
Дано:
α = 75° (против часовой стрелки)
O – центр поворота
1) A A1;
AOA1 = 75°
2) B B1;
BOB1 = 75°
Теорема:
Поворот является движением.
f – поворот
α – угол поворота (против часовой стрелки)
точка O – центр поворота
Тогда треугольники равны ΔOMN = ΔOM1N1 по двум сторонам и углу между ними:
MON = M1ON1
Тогда MN = M1N1, значит, f – движение.
Задача 150.
точка O – центр поворота
α = 180°
1) A A1;
AOA1 = 180°
2) B B1;
BOB1 = 180°
Задача 151.
точка A – центр поворота
α = 160° (против часовой стрелки)
1) B B1;
BAB1 = 160°
2) C C1;
CAC1 = 160°
Задача 152.
точка O – центр поворота
Построить:
1) A A1;
AOA1 = 120°
2) B B1;
BOB1 = 120°
Задача 153.
точка C – центр окружности (C; R)
точка O – центр поворота
угол поворота α = 60° (против часовой стрелки)
а) точка C и точка O не совпадают
б) точка C и точка O совпадают
Построить:
1) проведем луч CO
2) C C1;
COC1 = 60°
Т.к. точка О – центр поворота и точка С – центр окружности совпадают, то окружности (C;R) и (C1;R) будут тоже совпадать.
Задача 154.
Δ ABC – равнобедренный, равносторонний
D – точка пересечения биссектрис
D – центр поворота
угол поворота α = 120°
ΔABC ΔABC
Т.к. Δ ABC – правильный, то все углы в нем равны 60°.
Т.к. точка D – центр описанной и вписанной окружности, то
Δ ABD = Δ BDC = Δ DAC (по трем сторонам).
Следовательно, что ADB = BDC = CDA
A B
B C
C A
Таким образом, Δ ABC отображается на себя.
Повторение.
Задача 155.
ABC : BCA : CAB = 3 : 7 : 8
Найти: наибольший угол треугольника
Пусть x – коэффициент пропорциональности. Зная, что сумма углов в треугольнике равна 180°, составим и решим уравнение:
3x + 7x + 8x = 180
Наибольший угол CAB = 8 • 10 = 80°
Задача 156.
треугольник ΔABC – равнобедренный,
один угол больше другого:
ABC > BAC на 60°
Найти: угол при основании треугольника
Пусть x° – угол при основании треугольника. Зная, что сумма углов в треугольнике составляет 180°, составим и решим уравнение:
(x + 60°) + x + x = 180°
Значит, BAC = 40°.
Задача 157.
треугольник ΔABC – прямоугольный
c = 26 см – гипотенуза
Найти: больший катет b
Пусть x – коэффициент пропорциональности. По теореме Пифагора составим и решим уравнение:
(5x) 2 + (12x) 2 = 26 2
25x 2 + 144x 2 = 676
b = 12 • 2 = 24 (см)
Задача 158.
C = 90°
c = 13 – гипотенуза
По теореме Пифагора получаем:
a = = = = 12
Тогда площадь треугольника
SΔABC = • ab = =
= 30 (квадратных единиц)
Задача 159.
треугольник ΔABC – равнобедренный,
C = 90°
c = 4 – гипотенуза
Найти: площадь треугольника SΔABC = ?
SΔABC = • ab
Т.к. Δ ABC – равнобедренный, то углы при основании по 45° и катеты равны a = b.
По теореме Пифагора получаем:
Тогда (4 ) 2 = 2a 2
Тогда площадь треугольника
SΔABC = • ab = =
= 8 (квадратных единиц)
Задача 160.
A = 90°
a = 6
Найти: радиус описанной окружности R = ?
Т.к. AH – медиана, то CH = c
По теореме Пифагора получаем:
Тогда CH = c = = 5 (ед)
Точка H – центр описанной окружности
Т.к. R = AH, то R = AH = CH = 5 ед.
Задача 161.
C = 90°
соотношение острых углов
ABC : CAB = 1 : 2
AC = 4
Найти: радиус описанной окружности R = ?
Пусть x – коэффициент пропорциональности. Зная, что сумма углов в треугольнике составляет 180°, составим и решим уравнение:
Тогда CAB = 30°,
ABC = 2 • 30° = 60°
Следовательно, BC = AB
По теореме Пифагора получаем:
AC 2 + = AB 2
AC 2 = AB 2
AB 2 = = 64
R = AD = BD = 8 : 2 = 4 (ед)
Задача 162.
C = 90°
радиус описанной окружности
Тогда AB = 2,5 • 2 = 5
По теореме Пифагора получаем:
AC = = = = 4 (ед)
Задача 163.
C = 90°
tg A =
0,6 = ; AC = 3 • = 5 (ед)
Задача 164.
A = 90°
Найти: ABC = ?
Решение:
Т.к. AH = AC, то Δ AHC – равнобедренный.
Точка H – радиус вписанной окружности, поэтому AH = CH, но AH = AC, следовательно, AH = CH = AC.
Тогда Δ AHC – равносторонний.
Значит, HAC = AHC = HCA = 60°.
ABC = 180° – (90° + 60°) = 30°.
Задача 165.
треугольник Δ ABC – правильный, равносторонний,
SΔABC = кв.ед.
Найти: длину биссектрисы BH = ?
Т.к. Δ ABC – правильный, то все углы по 60°.
Рассмотрим Δ ABC – равнобедренный, где
BAC = BCA = 60°.
Тогда BH – медиана, высота.
Значит, перпендикулярны отрезки BH AC.
Рассмотрим треугольники Δ ABH и Δ BHC.
AB = BC, по условию.
AH = CH, BH – медиана.
Значит, треугольники равны Δ ABH = Δ BHC.
Т.е. SΔABH = SΔABC = • = (кв.ед.)
SΔABH = AH • BH
Рассмотрим треугольник Δ ABH.
Т.к. BH – биссектриса, то угол ABH = 30°, поэтому
AH = AB
SΔABH = AB • BH =
AB • BH = (*)
По теореме Пифагора получаем:
AB 2 = AH 2 + BH 2
AB 2 = AB 2 + BH 2
BH 2 = AB 2
BH = AB (**)
Используя результат (**) в уравнении (*), получаем
AB • AB =
AB 2 =
AB =
Тогда AB • BH = • BH =
Задача 166.
треугольник Δ ABC – правильный, равносторонний,
радиус описанной окружности
R =
Найти: площадь треугольника
Рассмотрим Δ ABO (AO = BO = R) Δ ABO – равнобедренный.
Проведем из вершины O к AB высоту OH.
Рассмотрим Δ AOH, где AHO = 90°.
Т.к. HAO = 30°, то OH = AO OH = R
OH = • =
По теореме Пифагора получаем:
OH 2 + AH 2 = OA 2
+ AH 2 = ( ) 2 + AH 2 =
=
AH 2 = – = AH = =
Тогда площадь треугольника
SΔAOH = AH • OH = • • = =
Следовательно, SΔABO = 2 • SΔAOH = 2 • = (кв.ед.)
Тогда площадь треугольника
SΔABC = 3 • SΔABO = 3 • = = 2 = 2,25 (кв.ед.)
Задача 167.
Площадь ромба SABCD = 384
Соотношение диагоналей ромба:
Найти: сторону ромба AB = ?
SABCD = AC • BD
Пусть x – коэффициент пропорциональности. Тогда
SABCD = 3x • 4x
Следовательно, диагональ BD = 4x = 4 • 8 = 32
AC = 3x = 3 • 8 = 24
Поэтому половина диагонали AO = AC = • 24 = 12
BO = BD = • 32 = 16
По теореме Пифагора получаем:
AO 2 + BO 2 = AB 2
Сторона ромба AB = = = 20
Задача 168.
треугольник Δ ABD – равнобедренный,
основание AD = 16
Найти: площадь треугольника
SΔABD = AD • BH
Проведем высоту BH к основанию AD.
По свойству равнобедренного треугольника:
BH – медиана, биссектриса, высота.
Т.к. BH – медиана, то AH = DH = 16 : 2 = 8 (ед.)
Рассмотрим треугольник Δ ABH, где угол AHB = 90°.
По теореме Пифагора получаем:
AB 2 = AH 2 + BH 2
BH = = = = 6 (ед.)
Тогда площадь треугольника
SΔABD = AD • BH = •16 • 6 = 48 (кв.ед.)
Ответ: площадь треугольника SΔABD = 48 кв.ед.
Задача 169.
треугольник Δ ABC –равнобедренный,
основание AC больше высоты BH на 15: AC > BH на 15
Найти: основание AC = ?
Т.к. треугольник Δ ABC –равнобедренный, то BH – высота, медиана, биссектриса.
Тогда AC = AH + CH = AH + AH = 2 AH
Рассмотрим Δ ABH – прямоугольный.
Пусть AC = (x) ед. AH = ( ) ед.
Тогда AB = (x – 15) ед. (по условию).
По теореме Пифагора решим уравнение:
(x – 15) 2 = ( ) 2 + 15 2 x 2 – 30x + 225 = + 225
4 (x 2 – 30x) = x 2
4x 2 – 120x = x 2
3x 2 – 120x = 0 | : x
Таким образом, 40 ед. – длина основания.
Ответ: AC = 40 ед.
Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Подобные треугольники
Задача 170.
треугольник Δ ABC, два угла
A = 54°
B = 18°
CH – биссектриса угла C
Доказать: подобие треугольников
Δ BHC Δ ABC
C = 180° – ( A + B)
C = 180° – (54° + 18°) = 108°
Т.к. CH – биссектриса угла C, то
BCH = HCA = 108° : 2 = 54°
Рассмотрим Δ BHC
HBC = B = 18°
BCH = A = 54°
Тогда CHB = C = 108°
Поэтому треугольники подобны Δ BHC Δ ABC.
Задача 171.
верхнее основание BC = 4 см
нижнее основание AD = 10 см
диагональ BD = 8 см
часть диагонали BO = ?
соотношение периметров треугольников
= ?
Углы равны CBO = ODA как накрест лежащие при параллельных прямых BC и AD и секущей BD.
Углы равны BCO = OAD как накрест лежащие при параллельных прямых BC и AD и секущей AC.
Тогда треугольники подобны Δ BCO Δ AOD.
= = = =
= . Тогда 4AO = 10BO BO = AO
= = 0,4 = k
Пусть BO = x, AO = 8 – x. Тогда 10x = 4 • (8 – x)
x = 2 (см)
Следовательно, BO = 2 см.
= k = 0,4
Ответ: BO = 2 см, = 0,4.
Задача 172.
ΔABC ΔA1B1C1 ,
периметр треугольника:
P (ΔABC) = 12 +16 + 20 = 48 (дм)
Т.к. треугольники подобны, то
= =
= = = k (*)
Тогда соотношение периметров треугольников
= k (**)
Из равенств (*) и (**) следует
=
=
B1C1 = = 20 (дм)
Тогда =
=
A1B1 = = 15 (дм)
Задача 173.
ABCD – трапеция,
стороны трапеции пересекаются в точке M:
Рассмотрим треугольники ΔAMD и ΔBMC:
BAD = MBC, как соответственные при параллельных прямых BC и AD и секущей AB.
MCB = MDA, как соответственные при параллельных прямых BC и AD и секущей CD.
Тогда, по первому признаку подобия треугольников:
треугольники подобны Δ AMD Δ BMC.
= =
= ,
но AM = AB + BM = 3,9 + BM
8 • BM = 5 (3,9 + BM)
= ,
💥 Видео
Физика - движение по окружностиСкачать
Вычитание векторов. 9 класс.Скачать
Математика Без Ху!ни. Полярные координаты. Построение графика функции.Скачать
Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Урок 8. Параллельный перенос. Декартовы координаты на плоскости.Скачать
Параллельный перенос. Координаты точек при параллельном переносе. Геометрия 8 классСкачать
Векторы. Метод координат. Вебинар | МатематикаСкачать
Стереометрия 10 класс. Часть 1 | МатематикаСкачать