Четырехугольная призма — это многогранник, две грани которого являются равными квадратами, лежащими в параллельных плоскостях, а остальные грани (боковые грани) — параллелограммами, имеющими общие стороны с этими квадратами.
Правильная четырехугольная призма — это четырехугольная призма у которой основания квадраты, а боковые грани прямоугольники.
Данное геометрическое тело по своим свойствам и характеристикам соответствует — параллелепипеду.
Основания призмы являются равными квадратами.
Боковые грани призмы являются прямоугольниками.
Боковые рёбра призмы параллельны и равны.
Размеры призмы можно выразить через длину стороны a и высоту h.
Площадь полной поверхности призмы равна сумме площади её боковой поверхности и удвоенной площади основания.
Формула площади поверхности четырехугольной призмы:
- Призма
- Призма
- Формулы вычисления объема и площади поверхности призмы:
- В основании лежит треугольник.
- В основании лежит четырехугольник
- 1. Прямоугольник
- 2. Ромб
- 3. Трапеция
- Рассмотрим площади правильных многоугольников:
- Подобие треугольников
- Прямоугольный треугольник и его свойства:
- Теорема Пифагора
- Теорема синусов
- Теорема косинусов
- Четырехугольная призма: высота, диагональ, площадь
- Понятие о призме
- Что такое призма четырехугольная?
- Виды параллелепипедов
- Поверхность призмы и ее площадь
- Площадь прямоугольной призмы с квадратным основанием
- Площадь косоугольного параллелепипеда
- Длина диагонали прямоугольного параллелепипеда
- Объем призмы
- Задача с прямоугольным параллелепипедом
- Задача с косоугольным параллелепипедом
- 💡 Видео
Видео:СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnlineСкачать
Призма
Видео:10 класс, 30 урок, ПризмаСкачать
Призма
Призма – это многогранник, состоящий из двух равных многоугольников, расположенных в параллельных плоскостях, и $n$-го количества параллелограммов.
Многоугольники $ABCD$ и $A_1B_1C_1D_1$ – называются основаниями призмы.
Параллелограммы $АА_1В_1В, ВВ_1С_1С$ и т.д.- боковыми гранями.
Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.
Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.
Формулы вычисления объема и площади поверхности призмы:
Чтобы были понятны формулы, введем обозначения:
$P_$ — периметр основания;
$S_$ — площадь основания;
$S_$ — площадь боковой поверхности;
$S_$ — площадь полной поверхности;
$h$ — высота призмы.
В основании призмы могут лежать различные многоугольники, рассмотрим площади некоторых из них.
В основании лежит треугольник.
- $S=/$, где $h_a$ — высота, проведенная к стороне $а$
- $S=/$, где $a,b$ — соседние стороны, $α$ — угол между этими соседними сторонами.
- Формула Герона $S=√
- $S=p·r$, где $r$ — радиус вписанной окружности
- $S=/$, где $R$ — радиус описанной окружности
- Для прямоугольного треугольника $S=/$, где $а$ и $b$ — катеты прямоугольного треугольника.
В основании лежит четырехугольник
1. Прямоугольник
$S=a·b$, где $а$ и $b$ — смежные стороны.
2. Ромб
$S=/$, где $d_1$ и $d_2$ — диагонали ромба
$S=a^2·sinα$, где $а$ — длина стороны ромба, а $α$ — угол между соседними сторонами.
3. Трапеция
$S=/$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.
Прямая призма называется правильной, если ее основания – правильные многоугольники.
Рассмотрим площади правильных многоугольников:
1. Для равностороннего треугольника $S=/$, где $а$ — длина стороны.
$S=a^2$, где $а$ — сторона квадрата.
Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:
Построим прямую призму, в основании которой лежит ромб.
Распишем формулу площади полной поверхности:
В прямой призме высота равна боковому ребру, следовательно, $h=С_1С=20$
Теперь найдем площадь основания: площадь ромба равна половине произведения его диагоналей.
Далее подставим все найденные величины в формулу полной поверхности и вычислим ее:
Цилиндр — это та же призма, в основании которой лежит круг.
Средняя линия треугольника параллельна основанию и равна его половине.
$MN$ — средняя линия, так как соединяет середины соседних сторон.
Подобие треугольников
- Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
- Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
Прямоугольный треугольник и его свойства:
Некоторые свойства прямоугольного треугольника:
- Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
- Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)
Теорема Пифагора
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
Соотношение между сторонами и углами в прямоугольном треугольнике:
В прямоугольном треугольнике $АВС$, с прямым углом $С$
Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.
Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.
- Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
- Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
- Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
- Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
- В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
- Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
- Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения
Значения тригонометрических функций некоторых углов:
$α$ | $30$ | $45$ | $60$ |
$sinα$ | $/$ | $/$ | $/$ |
$cosα$ | $/$ | $/$ | $/$ |
$tgα$ | $/$ | $1$ | $√3$ |
$ctgα$ | $√3$ | $1$ | $/$ |
Теорема синусов
Во всяком треугольнике стороны относятся как синусы противолежащих углов:
Теорема косинусов
Четырехугольная призма: высота, диагональ, площадь
В школьном курсе стереометрии одной из самых простых фигур, которая имеет не нулевые размеры вдоль трех пространственных осей, является четырехугольная призма. Рассмотрим в статье, что это за фигура, из каких элементов она состоит, а также как можно рассчитать площадь ее поверхности и объем.
Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать
Понятие о призме
В геометрии призмой полагают пространственную фигуру, которая образована двумя одинаковыми основаниями и боковыми поверхностями, которые соединяют стороны этих оснований. Отметим, что оба основания переходят друг в друга с помощью операции параллельного переноса на некоторый вектор. Такое задание призмы приводит к тому, что все ее боковые стороны всегда являются параллелограммами.
Вам будет интересно: Расшифровка MVP. Что означает эта аббревиатура и в каких видах спорта она используется
Количество сторон основания может быть произвольным, начиная от трех. При стремлении этого числа к бесконечности, призма плавно переходит в цилиндр, поскольку ее основание становится кругом, а боковые параллелограммы, соединяясь, образуют цилиндрическую поверхность.
Вам будет интересно: Счастливый и успешный — это продуктивный!
Как и любой полиэдр, призма характеризуется сторонами (плоскости, которые ограничивают фигуру), ребрами (отрезки, по которым пересекаются две любые стороны) и вершинами (точки встречи трех сторон, для призмы две из них являются боковыми, а третья — основанием). Количества названных трех элементов фигуры связаны между собой следующим выражением:
Здесь Р, С и В — это число ребер, сторон и вершин, соответственно. Это выражение является математической записью теоремы Эйлера.
Выше приведен рисунок, где показаны две призмы. В основании одной из них (A) лежит правильный шестиугольник, и стороны боковые перпендикулярны основаниям. Рисунок B демонстрирует другую призму. Ее боковые стороны уже не перпендикулярны основаниям, а основание представляет собой правильный пятиугольник.
Видео:ЕГЭ математика задача 2 вариант 8Скачать
Что такое призма четырехугольная?
Как понятно из описания выше, тип призмы в первую очередь определяется видом многоугольника, который образует основание (оба основания одинаковые, поэтому речь можно вести об одном из них). Если этим многоугольником является параллелограмм, то мы получаем четырехугольную призму. Таким образом, все стороны этого вида призмы являются параллелограммами. Четырехугольная призма имеет собственное название — параллелепипед.
Вам будет интересно: Инженерно экономический колледж в Набережных Челнах КФУ: как поступить, общежитие, о колледже
Количество сторон параллелепипеда равно шести, причем каждая сторона имеет аналогичную параллельную ей. Поскольку основания параллелепипеда — это две стороны, то оставшиеся четыре являются боковыми.
Количество вершин параллелепипеда равно восьми, в чем легко убедиться, если вспомнить, что вершины призмы образуются только на вершинах базовых многоугольников (4х2=8). Применяя теорему Эйлера, получаем число ребер:
Р = С + В — 2 = 6 + 8 — 2 = 12
Из 12-ти ребер, только 4 образованы самостоятельно боковыми сторонами. Остальные 8 лежат в плоскостях оснований фигуры.
Далее в статье речь пойдет только о четырехугольных призмах.
Видео:№225. Диагональ правильной четырехугольной призмы образует с плоскостью боковой грани угол в 30°.Скачать
Виды параллелепипедов
Первый тип классификации заключается в особенности параллелограмма, лежащего в основании. Он может быть следующего вида:
- обычный, у которого углы не равны 90o;
- прямоугольник;
- квадрат — правильный четырехугольник.
Второй тип классификации заключается в угле, при котором боковая сторона пересекает основание. Здесь возможно два разных случая:
- этот угол не является прямым, тогда призму называют косоугольной или наклонной;
- угол равен 90o, тогда такая призма является прямоугольной или просто прямой.
Третий тип классификации связан с высотой призмы. Если призма является прямоугольной, и в основании лежит либо квадрат, либо прямоугольник, тогда ее называют прямоугольным параллелепипедом. Если же в основании находится квадрат, призма является прямоугольной, а ее высота равна длине стороны квадрата, то мы получаем всем известную фигуру куб.
Видео:Геометрия 10 класс (Урок№14 - Призма.)Скачать
Поверхность призмы и ее площадь
Совокупность всех точек, которые лежат на двух основаниях призмы (параллелограммах) и на ее боковых сторонах (четыре параллелограмма), образуют поверхность фигуры. Площадь этой поверхности может быть вычислена, если рассчитать площадь основания и эту величину для боковой поверхности. Тогда их сумма даст искомое значение. Математически это записывается так:
Вам будет интересно: Как переводится и что значит SMH
Здесь So и Sb — площадь основания и боковой поверхности, соответственно. Цифра 2 перед So появляется в виду того, что оснований два.
Отметим, что записанная формула справедлива для любой призмы, а не только для площади четырехугольной призмы.
Полезно напомнить, что площадь параллелограмма Sp вычисляется по формуле:
Где символы a и h обозначают длину одной из его сторон и высоту, проведенную к этой стороне, соответственно.
Видео:Призма Решение задачСкачать
Площадь прямоугольной призмы с квадратным основанием
В правильной четырехугольной призме основание представляет собой квадрат. Обозначим для определенности его сторону буквой a. Чтобы рассчитать площадь правильной четырехугольной призмы, следует знать ее высоту. Согласно определению для этой величины, она равна длине перпендикуляра, опущенного из одного основания на другое, то есть равна расстоянию между ними. Обозначим ее буквой h. Поскольку все боковые грани перпендикулярны основаниям для рассматриваемого типа призмы, то высота правильной четырехугольной призмы будет равна длине ее бокового ребра.
В общей формуле для площади поверхности призмы стоит два слагаемых. Площадь основания в данном случае рассчитать просто, она равна:
Чтобы вычислить площадь боковой поверхности, рассуждаем следующим образом: эта поверхность образована 4-мя одинаковыми прямоугольниками. Причем стороны каждого из них равны a и h. Это означает, что площадь Sb буде равна:
Заметим, что произведение 4*a — это периметр квадратного основания. Если обобщить это выражение на случай произвольного основания, тогда для прямоугольной призмы боковую поверхность можно рассчитать так:
Где Po — периметр основания.
Возвращаясь к задаче расчета площади правильной четырехугольной призмы, можно записать итоговую формулу:
S = 2*So + Sb = 2*a2 + 4*a*h = 2*a*(a+2*h)
Видео:Построение призмы высотой 30ммСкачать
Площадь косоугольного параллелепипеда
Вычислить ее несколько сложнее, чем для прямоугольного. В этом случае площадь основания четырехугольной призмы вычисляется по той же формуле, что и для параллелограмма. Изменения касаются способа определения площади боковой поверхности.
Для этого используется та же формула через периметр, что приведена в пункте выше. Только теперь в ней появятся несколько иные множители. Общая формула для Sb в случае косоугольной призмы имеет вид:
Здесь с — это длина бокового ребра фигуры. Величина Psr является периметром прямоугольного среза. Строится этот сред следующим образом: необходимо плоскостью пересечь все боковые грани таким образом, чтобы она была перпендикулярна всем им. Образованный прямоугольник и будет искомым срезом.
На рисунке выше приведен пример косоугольного параллелепипеда. Заштрихованное его сечение с боковыми сторонами образует прямые углы. Периметр сечения равен Psr. Он образован четырьмя высотами боковых параллелограммов. Для этой четырехугольной призмы площадь боковой поверхности рассчитывается по указанной выше формуле.
Видео:№567. Докажите, что середины сторон произвольного четырехугольника являютсяСкачать
Длина диагонали прямоугольного параллелепипеда
Диагональ параллелепипеда — это отрезок, который соединяет две вершины, не имеющие общих сторон, которые их образуют. В любой четырехугольной призме диагоналей всего четыре. Для прямоугольного параллелепипеда, в основании которого расположен прямоугольник, длины всех диагоналей равны друг другу.
Ниже на рисунке приведена соответствующая фигура. Красный отрезок является ее диагональю.
Рассчитать ее длину очень просто, если вспомнить о теореме Пифагора. Каждый школьник может получить искомую формулу. Она имеет следующую форму:
Здесь D — длина диагонали. Остальные символы — это длины сторон параллелепипеда.
Многие путают диагональ параллелепипеда с диагоналями его сторон. Ниже приводится рисунок, где цветными отрезками изображены диагонали сторон фигуры.
Длина каждой из них также определяется по теореме Пифагора и равна квадратному корню из суммы квадратов соответствующих длин сторон.
Видео:Экстремальная столярка. Идеальная прифуговка на фрезерном столе.Скачать
Объем призмы
Помимо площади правильной четырехугольной призмы или других видов призм, для решения некоторых геометрических задач следует знать и их объем. Эта величина для абсолютно любой призмы вычисляется по следующей формуле:
Если призма является прямоугольной, тогда достаточно вычислить площадь ее основания и умножить его на длину ребра боковой стороны, чтобы получить объем фигуры.
Если призма является правильной четырехугольной, тогда ее объем будет равен:
Легко видеть, что эта формула преобразуется в выражение для объема куба, если длина бокового ребра h равна стороне основания a.
Видео:Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать
Задача с прямоугольным параллелепипедом
Для закрепления изученного материала решим следующую задачу: имеется прямоугольный параллелепипед, стороны которого равны 3 см, 4 см и 5 см. Необходимо рассчитать площадь его поверхности, длину диагонали и объем.
Для определенности будем считать, что основанием фигуры является прямоугольник со сторонами 3 см и 4 см. Тогда его площадь равна 12 см2, а период составляет 14 см. Используя формулу для площади поверхности призмы, получаем:
S = 2*So + Sb = 2*12 + 5*14 = 24 + 70 = 94 см2
Для определения длины диагонали и объема фигуры можно непосредственно воспользоваться приведенными выше выражениями:
D = √(32+42+52) = 7,071 см;
Видео:Стереометрия 2. ПризмаСкачать
Задача с косоугольным параллелепипедом
Ниже на рисунке изображена косоугольная призма. Ее стороны равны: a=10 см, b = 8 см, с = 12 см. Необходимо найти площадь поверхности этой фигуры.
Сначала определим площадь основания. Из рисунка видно, что острый угол равен 50o. Тогда его площадь равна:
So = h*a = sin(50o)*b*a
Для определения площади боковой поверхности, следует найти периметр заштрихованного прямоугольника. Стороны этого прямоугольника равны a*sin(45o) и b*sin(60o). Тогда периметр этого прямоугольника равен:
Полная площадь поверхности этого параллелепипеда равна:
S = 2*So + Sb = 2*(sin(50o)*b*a + a*c*sin(45o) + b*c*sin(60o))
Подставляем данные из условия задачи для длин сторон фигуры, получаем ответ:
Из решения этой задачи видно, что для определения площадей косоугольных фигур используются тригонометрические функции.
💡 Видео
№1,17 | Все теория по планиметрии за 4 часа | Решаем все прототипы №1 из ФИПИСкачать
Призма и пирамида. Площадь и объем. Вебинар | Математика 10 классСкачать
Площадь поверхности призмы. 11 класс.Скачать
Геометрия 10 класс (Урок№15 - Пирамида.)Скачать
Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольникаСкачать
10 класс, 14 урок, Задачи на построение сеченийСкачать
Задание 5. ЕГЭ профиль. ПРИЗМА.Скачать