Видео:Сечение Пирамиды Плоскостью Параллельной боковому ребруСкачать
Условие
Дана правильная четырёхугольная пирамида KMNPQ со стороной основания MNPQ , равной 6 , и боковым ребром 3sqrt .
а) Постройте сечение пирамиды плоскостью, проходящей через прямую NF параллельно диагонали MP , если точка F — середина ребра MK .
б) Найдите величину угла между плоскостью сечения и плоскостью KMP .
Видео:№3. Как строить сечения пирамидСкачать
Решение
а) Пусть KO — высота пирамиды, F — середина MK ; FE parallel MP ( в плоскости PKM ) . Так как FE — средняя линия triangle PKM, то FE=frac2.
Построим сечение пирамиды плоскостью, проходящей через NF и параллельной MP , то есть плоскостью NFE . L — точка пересечения EF и KO . Так как точки L и N принадлежат искомому сечению и лежат в плоскости KQN , то точка T , полученная как пересечение LN и KQ , является также точкой пересечения искомого сечения и ребра KQ . NETF — искомое сечение.
б) Плоскости NFE и MPK пересекаются по прямой FE . Значит, угол между этими плоскостями равен линейному углу двугранного угла OFEN , построим его: LO perp MP, MP parallel FE, следовательно, LO perp FE; triangle NFE — равнобедренный ( NE=NF как соответствующие медианы равных треугольников KPN и KMN ) , NL — его медиана ( EL=LF, так как PO=OM, а triangle KEF sim triangle KPM ) . Отсюда NL perp FE и angle NLO — искомый.
ON=frac12QN=frac12MNsqrt 2=3sqrt 2.
triangle KON — прямоугольный.
Катет KO по теореме Пифагора равен KO=sqrt .
OL= frac12KO= frac12sqrt= frac12sqrt = frac12sqrt= frac32sqrt = frac32cdot 2sqrt 6= 3sqrt 6.
Видео:Построение сечения параллельно прямойСкачать
Постройте сечение пирамиды плоскостью проходящей через прямую am параллельно прямой bd
Прямая АМ задана. Соединим точку М с вершиной С параллелепипеда и проведем диагональ АС в плоскости его основания.
Диагональ А1С1, лежащей в плоскости, параллельной основанию АВСD, параллельна диагонали АС.
АС ∈ построенной плоскости. Если прямая вне плоскости параллельна какой-нибудь прямой на плоскости, то эта прямая параллельна и самой плоскости.
Следовательно, плоскость АМС и прямая А1С1 — параллельны, и АМС — искомая плоскость.
Видео:ПОСТРОЕНИЕ СЕЧЕНИЙ ТЕТРАЭДРА ПЛОСКОСТЬЮСкачать
Узнать ещё
Знание — сила. Познавательная информация
Видео:СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnlineСкачать
Как построить сечение пирамиды
Разберем, как построить сечение пирамиды, на конкретных примерах. Поскольку в пирамиде нет параллельных плоскостей, построение линии пересечения (следа) секущей плоскости с плоскостью грани чаще всего предполагает проведение прямой через две точки, лежащие в плоскости этой грани.
В простейших задачах требуется построить сечение пирамиды плоскостью, проходящей через данные точки, уже лежащие в одной грани.
Построить сечение плоскостью (MNP)
Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.
Треугольник MNP — сечение пирамиды
Точки M и N лежат в одной плоскости ABS, следовательно, через них можем провести прямую. След этой прямой — отрезок MN. Он видимый, значит, соединяем M и N сплошной линией.
Точки M и P лежат в одной плоскости ACS, поэтому через них проведем прямую. След — отрезок MP. Мы его не видим, поэтому отрезок MP проводим штрихом. Аналогично строим след PN.
Треугольник MNP — искомое сечение.
Если точка, через которую требуется провести сечение, лежит не на ребре, а на грани, то она не будет концом следа-отрезка.
Пример. Построить сечение пирамиды плоскостью, проходящей через точки B, M и N, где точки M и N принадлежат, соответственно, граням ABS и BCS.
Здесь точки B и M лежат в одной грани ABS, поэтому можем через них провести прямую.
Аналогично проводим прямую через точки B и P. Получили, соответственно, следы BK и BL.
Точки K и L лежат в одной грани ACS, поэтому через них можем провести прямую. Ее след — отрезок KL.
Треугольник BKL — искомое сечение.
Однако не всегда через данные в условии точки удается провести прямую. В этом случае нужно найти точку, лежащую на прямой пересечения плоскостей, содержащих грани.
Пример. Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.
Точки M и N лежат в одной плоскость ABS, поэтому через них можно провести прямую. Получаем след MN. Аналогично — NP. Оба следа видимые, поэтому соединяем их сплошной линией.
Точки M и P лежат в разных плоскостях. Поэтому соединить их прямой не можем.
Продолжим прямую NP.
Она лежит в плоскости грани BCS. NP пересекается только с прямыми, лежащими в этой же плоскости. Таких прямых у нас три: BS, CS и BC. С прямыми BS и CS уже есть точки пересечения — это как раз N и P. Значит, ищем пересечение NP с прямой BC.
Точку пересечения (назовем ее H), получаем, продолжая прямые NP и BC до пересечения.
Эта точка H принадлежит как плоскости (BCS), поскольку лежит на прямой NP, так и плоскости (ABC), поскольку лежит на прямой BC.
Таким образом мы получили еще одну точку секущей плоскости, лежащей в плоскости (ABC).
Через H и точку M, лежащую в этой же плоскости, можем провести прямую.
Получим след MT.
T — точка пересечения прямых MH и AC.
Так как T принадлежит прямой AC, то через нее и точку P можем провести прямую, так как они обе лежат в одной плоскости (ACS).
4-угольник MNPT — искомое сечение пирамиды плоскостью, проходящей через данные точки M,N,P.
Мы работали с прямой NP, продлевая ее для отыскания точки пересечения секущей плоскости с плоскостью (ABC). Если работать с прямой MN, приходим к тому же результату.
Рассуждаем так: прямая MN лежит в плоскости (ABS), поэтому пересекаться может только с прямыми, лежащими в этой же плоскости. У нас таких прямых три: AB, BS и AS. Но с прямыми AB и BS уже есть точки пересечения: M и N.
Значит, продлевая MN, ищем точку пересечения ее с прямой AS. Назовем эту точку R.
Точка R лежит на прямой AS, значит, она лежит и в плоскости (ACS), которой принадлежит прямая AS.
Поскольку точка P лежит в плоскости (ACS), через R и P можем провести прямую. Получаем след PT.
Точка T лежит в плоскости (ABC), поэтому через нее и точку M можем провести прямую.
Таким образом, получили все то же сечение MNPT.
Рассмотрим еще один пример такого рода.
Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.
Через точки M и N, лежащие в одной плоскости (BCS), проводим прямую. Получаем след MN (видимый).
Через точки N и P, лежащие в одной плоскости (ACS), проводим прямую. Получаем след PN (невидимый).
Через точки M и P прямую провести не можем.
1) Прямая MN лежит в плоскости (BCS), где есть еще три прямые: BC, SC и SB. С прямыми SB и SC уже есть точки пересечения: M и N. Поэтому ищем точку пересечения MN с BC. Продолжив эти прямые, получаем точку L.
Точка L принадлежит прямой BC, а значит, она лежит в плоскости (ABC). Поэтому через L и P, которая также лежит в плоскости (ABC) можем провести прямую. Ее след — PF.
F лежит на прямой AB, а значит, и в плоскости (ABS). Поэтому через F и точку M, которая также лежит в плоскости (ABS), проводим прямую. Ее след — FM. Четырехугольник MNPF — искомое сечение.
2) Другой путь — продолжить прямую PN. Она лежит в плоскости (ACS) и пересекается с прямыми AC и CS, лежащими в этой плоскости, в точках P и N.
Значит, ищем точку пересечения PN с третьей прямой этой плоскости — с AS. Продолжаем AS и PN, на пересечении получаем точку E. Поскольку точка E лежит на прямой AS, принадлежащей плоскости (ABS), то через E и точку M, которая также лежит в (ABS), можем провести прямую. Ее след — FM. Точки P и F лежат водной плоскости (ABC), проводим через них прямую и получаем след PF (невидимый).
📽️ Видео
10 класс, 14 урок, Задачи на построение сеченийСкачать
Построение сечений (часть 1). Пирамиды. сечениеСкачать
Как строить сечения тетраэдра и пирамидыСкачать
Как правильно построить сечение пирамиды плоскостью.Скачать
Стереометрия 10 класс. Часть 1 | МатематикаСкачать
№14 из профильного ЕГЭ по математике. Как строить сечения на изи. Серия-1Скачать
Построение сечения пирамиды. Метод следов.Скачать
Как строить сеченияСкачать
Построение линии пересечения поверхности пирамиды с проецирующей плоскостьюСкачать
Построение сечения пирамиды по трем точкамСкачать
Семестровая работа "Сечение пирамиды плоскостью"Скачать
Построение сечений Занятие 1Скачать
№104. Изобразите тетраэдр ABCD и отметьте точку М на ребре АВ. Постройте сечение тетраэдра плоскостьСкачать
ВСЕ О СЕЧЕНИЯХ В СТЕРЕОМЕТРИИСкачать
Пересечение пирамиды плоскостьюСкачать