Высота в прямоугольном треугольнике является диаметром окружности

Свойства высоты прямоугольного треугольника

В данной публикации мы рассмотрим основные свойства высоты в прямоугольном треугольнике, а также разберем примеры решения задач по этой теме.

Примечание: треугольник называется прямоугольным, если один из его углов является прямым (равняется 90°), а два остальных – острые ( Содержание скрыть

Видео:Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

Свойства высоты в прямоугольном треугольнике

Свойство 1

В прямоугольном треугольнике две высоты (h1 и h2) совпадают с его катетами.

Высота в прямоугольном треугольнике является диаметром окружности

Третья высота (h3) опускается на гипотенузу из прямого угла.

Свойство 2

Ортоцентр (точка пересечения высот) прямоугольного треугольника находится в вершине прямого угла.

Свойство 3

Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному.

Высота в прямоугольном треугольнике является диаметром окружности

Аналогичным образом доказывается, что ∠ABD = ∠DAC.

Свойство 4

В прямоугольном треугольнике высота, проведенная к гипотенузе, вычисляется следующим образом:

1. Через отрезки на гипотенузе, образованные в результате ее деления основанием высоты:

Высота в прямоугольном треугольнике является диаметром окружности

Высота в прямоугольном треугольнике является диаметром окружности

2. Через длины сторон треугольника:

Высота в прямоугольном треугольнике является диаметром окружности

Высота в прямоугольном треугольнике является диаметром окружности

Данная формула получена из Свойства синуса острого угла в прямоугольном треугольнике (синус угла равен отношению противолежащего катета к гипотенузе) :

Высота в прямоугольном треугольнике является диаметром окружности
Высота в прямоугольном треугольнике является диаметром окружности

Высота в прямоугольном треугольнике является диаметром окружности

Примечание: к прямоугольному треугольнику, также, применимы общие свойства высоты, представленные в нашей публикации – “Высота в треугольнике abc: определение, виды, свойства”.

Видео:ПРОБЛЕМНЫЕ ЗАДАЧИ #1 ЕГЭ 2024 с Высотой в Прямоугольном ТреугольникеСкачать

ПРОБЛЕМНЫЕ ЗАДАЧИ #1 ЕГЭ 2024 с Высотой в Прямоугольном Треугольнике

Пример задачи

Задача 1
Гипотенуза прямоугольного треугольника поделена высотой, проведенной к ней, на отрезки 5 и 13 см. Найдите длину этой высоты.

Решение
Воспользуемся первой формулой, представленной в Свойстве 4:

Высота в прямоугольном треугольнике является диаметром окружности

Задача 2
Катеты прямоугольного треугольника равны 9 и 12 см. Найдите длину высоты, проведенной к гипотенузе.

Решение
Для начала найдем длину гипотенузы по теореме Пифагора (пусть катеты треугольника – это “a” и “b”, а гипотенуза – “c”):
c 2 = a 2 + b 2 = 9 2 + 12 2 = 225.
Следовательно, с = 15 см.

Теперь можно применить вторую формулу из Свойства 4, рассмотренного выше:

Видео:ОГЭ 2021. Задание 24. Геометрическая задача на вычисление.Скачать

ОГЭ 2021. Задание 24. Геометрическая задача на вычисление.

Высота треугольника является диаметром окружности

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Решение №2522 Точка Н является основанием высоты ВН, проведённой из вершины прямого угла В прямоугольного треугольника АВС.

Точка Н является основанием высоты ВН, проведённой из вершины прямого угла В прямоугольного треугольника АВС. Окружность с диаметром ВН пересекает стороны АВ и СВ в точках Р и К соответственно. Найдите РК, если ВН = 12.

Источник: ОГЭ Ященко 2022 (50 вар)

Высота в прямоугольном треугольнике является диаметром окружности

По условию ВН = 12 и является диаметром окружности.
Рассмотрим ΔРВК, он прямоугольный (∠РВК = 90°), вписанный в окружность, тогда его гипотенуза РК , является диаметром окружности.
Диаметры окружности равны:

ВН = РК = 12

Ответ: 12.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 5 / 5. Количество оценок: 1

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время

В отзыве оставляйте контакт для связи, если хотите, что бы я вам ответил.

Видео:КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрияСкачать

КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрия

Свойства высоты прямоугольного треугольника

В данной публикации мы рассмотрим основные свойства высоты в прямоугольном треугольнике, а также разберем примеры решения задач по этой теме.

Примечание: треугольник называется прямоугольным, если один из его углов является прямым (равняется 90°), а два остальных – острые ( Содержание скрыть

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Свойства высоты в прямоугольном треугольнике

Свойство 1

В прямоугольном треугольнике две высоты (h1 и h2) совпадают с его катетами.

Высота в прямоугольном треугольнике является диаметром окружности

Третья высота (h3) опускается на гипотенузу из прямого угла.

Свойство 2

Ортоцентр (точка пересечения высот) прямоугольного треугольника находится в вершине прямого угла.

Свойство 3

Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному.

Высота в прямоугольном треугольнике является диаметром окружности

Аналогичным образом доказывается, что ∠ABD = ∠DAC.

Свойство 4

В прямоугольном треугольнике высота, проведенная к гипотенузе, вычисляется следующим образом:

1. Через отрезки на гипотенузе, образованные в результате ее деления основанием высоты:

Высота в прямоугольном треугольнике является диаметром окружности

Высота в прямоугольном треугольнике является диаметром окружности

2. Через длины сторон треугольника:

Высота в прямоугольном треугольнике является диаметром окружности

Высота в прямоугольном треугольнике является диаметром окружности

Данная формула получена из Свойства синуса острого угла в прямоугольном треугольнике (синус угла равен отношению противолежащего катета к гипотенузе) :

Высота в прямоугольном треугольнике является диаметром окружности
Высота в прямоугольном треугольнике является диаметром окружности

Высота в прямоугольном треугольнике является диаметром окружности

Примечание: к прямоугольному треугольнику, также, применимы общие свойства высоты, представленные в нашей публикации – “Высота в треугольнике abc: определение, виды, свойства”.

Видео:МЕТРИЧЕСКИЕ СООТНОШЕНИЯ В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ . §15 геометрия 8 классСкачать

МЕТРИЧЕСКИЕ СООТНОШЕНИЯ В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ . §15 геометрия 8 класс

Пример задачи

Задача 1
Гипотенуза прямоугольного треугольника поделена высотой, проведенной к ней, на отрезки 5 и 13 см. Найдите длину этой высоты.

Решение
Воспользуемся первой формулой, представленной в Свойстве 4:

Высота в прямоугольном треугольнике является диаметром окружности

Задача 2
Катеты прямоугольного треугольника равны 9 и 12 см. Найдите длину высоты, проведенной к гипотенузе.

Решение
Для начала найдем длину гипотенузы по теореме Пифагора (пусть катеты треугольника – это “a” и “b”, а гипотенуза – “c”):
c 2 = a 2 + b 2 = 9 2 + 12 2 = 225.
Следовательно, с = 15 см.

Теперь можно применить вторую формулу из Свойства 4, рассмотренного выше:

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Точка Н является основанием высоты

Точка Н является основанием высоты BH, проведённой из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и BC в точках P и K соответственно. Найти PK, если BH=19.

Высота в прямоугольном треугольнике является диаметром окружностиДано : ∆ABC, BH — высота,

BH — диаметр окружности (O; R), BH=19, окр.(O;R)∩AB=P, окр.(O;R)∩BC=K

∠PBK — вписанный угол (его вершина B лежит на окружности (O;R), а стороны пересекают окружность). По условию, ∠PBK=90º.

Если вписанный угол — прямой, значит, он опирается на диаметр.

Таким образом, PK — диаметр окружности (O;R). Следовательно, PK=BH=19.

Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найти AB, если AH=5, AC=20.

Высота в прямоугольном треугольнике является диаметром окружностиДано : ∆ABC, ∠ABC=90º,

BH — высота, AH=5, AC=20

AH — проекция катета AB на гипотенузу AC.Следовательно,

Видео:Высота в прямоугольном треугольнике. Как найти? Полезная формулаСкачать

Высота в прямоугольном треугольнике. Как найти? Полезная формула

Решение №2522 Точка Н является основанием высоты ВН, проведённой из вершины прямого угла В прямоугольного треугольника АВС.

Точка Н является основанием высоты ВН, проведённой из вершины прямого угла В прямоугольного треугольника АВС. Окружность с диаметром ВН пересекает стороны АВ и СВ в точках Р и К соответственно. Найдите РК, если ВН = 12.

Источник: ОГЭ Ященко 2022 (50 вар)

Высота в прямоугольном треугольнике является диаметром окружности

По условию ВН = 12 и является диаметром окружности.
Рассмотрим ΔРВК, он прямоугольный (∠РВК = 90°), вписанный в окружность, тогда его гипотенуза РК , является диаметром окружности.
Диаметры окружности равны:

ВН = РК = 12

Ответ: 12.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 5 / 5. Количество оценок: 1

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время

В отзыве оставляйте контакт для связи, если хотите, что бы я вам ответил.

📽️ Видео

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Метрические соотношения в прямоугольном треугольнике. 1 часть. 9 класс.Скачать

Метрические соотношения в прямоугольном треугольнике. 1 часть. 9 класс.

Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Геометрия. Задача. Треугольник. Окружность.Скачать

Геометрия.  Задача.  Треугольник.  Окружность.

Точка H является основанием высоты BH, проведённой из вершины прямого угла B прямоугольногоСкачать

Точка H является основанием высоты BH, проведённой из вершины прямого угла B прямоугольного

Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !Скачать

Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !

Математика | Метрические соотношения в прямоугольном треугольникеСкачать

Математика | Метрические соотношения в прямоугольном треугольнике

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

ОГЭ ЗАДАНИЕ 15 НАЙДИТЕ РАДИУС ОПИСАННОЙ ОКРУЖНОСТИ ОКОЛО КВАДРАТА #математика #2023 #огэ #mathСкачать

ОГЭ ЗАДАНИЕ 15 НАЙДИТЕ РАДИУС ОПИСАННОЙ ОКРУЖНОСТИ ОКОЛО КВАДРАТА #математика #2023 #огэ #math

№705. Около прямоугольного треугольника ABC с прямым углом С описана окружность. Найдите радиусСкачать

№705. Около прямоугольного треугольника ABC с прямым углом С описана окружность. Найдите радиус

Треугольник и окружность // ФАКТ ДЛЯ ОГЭСкачать

Треугольник и окружность // ФАКТ ДЛЯ ОГЭ
Поделиться или сохранить к себе: