Содержание:
- Преобразования декартовой системы координат
- Параллельный перенос и поворот системы координат
- Полярные координаты. Замечательные кривые
- Параллельный перенос и поворот
- Параллельный перенос
- Поворот
- Готовые работы на аналогичную тему
- Примеры задач на параллельный перенос и поворот
- § 2. Параллельный перенос и поворот
- Параллельный перенос
- Поворот
- Задачи
- 🔍 Видео
Видео:ПАРАЛЛЕЛЬНЫЙ ПЕРЕНОС И ПОВОРОТ 9 класс геометрия АтанасянСкачать

Преобразования декартовой системы координат
Параллельный перенос и поворот системы координат
1. Параллельный перенос системы координат. Пусть на плоскости две декартовы системы координат, причем соответствующие оси параллельны и сонаправлены (Рис.46):
Рис. 46. Параллельный перенос одной системы координат относительно другой системы.
Систему координат 
Пример:
Дана точка М(3;2) и начало новой системы координат 
Решение:
Используя формулы, определяющие параллельный перенос одной системы отсчета относительно другой, получим 
2. Поворот системы координат. Пусть даны две системы координат (старая и новая), имеющие общее начало отсчета и повернутые относительно друг друга на угол 
Рис. 47. Поворот одной системы координат относительно другой системы с общим началом координат двух систем.
Получим формулы, связывающие старые и новые координаты произвольной точки М(х; у). Из рисунка видно, что в новой системе координат координаты точки равны 



Найдем обратное преобразование системы координат, найдем матрицу 
Найдем алгебраические дополнения всех элементов
 
Определение: Унитарными преобразованиями называются такие преобразования, для которых определитель матрицы преобразования равен 1.
Определение: Ортогональными преобразованиями называются такие преобразования, для которых обратная матрица к матрице преобразования совпадает с транспонированной матрицей преобразования.
Таким образом, имеем 
Пример:
Найти координаты точки М(1; 2) в новой системе координат, повернутой относительно старой системы отсчета на угол 
Решение:
Воспользуемся полученными формулами 
Рассмотрим применение преобразования координат:
а) Преобразовать уравнение параболы 







Пример:
Преобразовать уравнение параболы 
Решение:
Найдем начало отсчета новой системы координат после параллельного переноса 



 
б) Выяснить, какую кривую описывает функция 
Проведем следующее преобразование 
 


Полярные координаты. Замечательные кривые
Пусть полярная ось совпадает с осью абсцисс Ох, а начало полярной оси (полюс полярной системы координат) совпадает с началом координат декартовой системы отсчета (Рис. 48). Любая точка М(х;у) в полярной системе координат характеризуется длиной радиус-вектора, соединяющего эту точку с началом отсчета и углом 
Рис. 48. Полярная система координат.
Главными значениями угла 

Рассмотрим замечательные кривые в полярной системе координат:
1. Спираль Архимеда 


Рис. 49. Спираль (улитка) Архимеда.
2. Уравнение окружности: уравнение 
Рис. 50. Окружность с центром в точке A(R; 0) и радиусом R.
3. Уравнение 
Рис. 51. Окружность с центром в точке А(0; R) и радиусом R.
4. Кардиоиды: 
Рис. 52. Кардиоида 
Рис. 53. Кардиоида 
Аналогично выглядят кардиоиды 
5. Петля: 

Для первого корня у = 0, а для второго и третьего — у = 9 . Следовательно, петля имеет вид 
| Рекомендую подробно изучить предметы: | 
| 
 | 
| Ещё лекции с примерами решения и объяснением: | 
- Бесконечно малые и бесконечно большие функции
- Замечательные пределы
- Непрерывность функций и точки разрыва
- Точки разрыва и их классификация
- Экстремум функции
- Методы решения систем линейных алгебраических уравнений (СЛАУ)
- Скалярное произведение и его свойства
- Векторное и смешанное произведения векторов
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Геометрия 9 класс : Параллельный перенос и поворотСкачать

Параллельный перенос и поворот
Вы будете перенаправлены на Автор24
Видео:Параллельный перенос. Симметрия. Поворот | МатематикаСкачать

Параллельный перенос
Введем определение параллельного переноса на вектор. Пусть нам дан вектор $overrightarrow$.
Рисунок 1. Параллельный перенос
Введем следующую теорему.
Параллельный перенос является движением.
Доказательство.
Пусть нам даны точки $M и N$. Пусть при их параллельном переносе на вектор $overrightarrow$ эти точки отображаются в точки $M_1$ и $N_1$, соответственно (рис. 2).
Рисунок 2. Иллюстрация теоремы 1
Значит четырехугольник $_1N_1N$ — параллелограмм и, следовательно, $MN=M_1N_1$. То есть параллельный перенос сохраняет расстояние между точками. Следовательно, параллельный перенос является движением.
Теорема доказана.
Видео:Геометрия 9 класс (Урок№30 - Поворот.)Скачать

Поворот
Введем определение поворота вокруг точки $O$ на угол $alpha $.
Поворот вокруг точки $O$ на угол $alpha $ — отображение плоскости на себя, при котором любая точка $M$ отображается на точку $M_1$ такую, что $_1=OM, angle M_1=angle alpha $ (Рис. 3).
Рисунок 3. Поворот
Готовые работы на аналогичную тему
Введем следующую теорему.
Поворот является движением.
Доказательство.
Пусть нам даны точки $M и N$. Пусть при их повороте вокруг точки $O$ на угол $alpha $ они отображаются в точки $M_1$ и $N_1$, соответственно (рис. 4).
Рисунок 4. Иллюстрация теоремы 2
Так как, по определению 2, $_1=OM, _1=ON$ и $overrightarrow<_1>=overrightarrow$, а ,$angle MON=angle M_1ON_1$, то
Следовательно, $MN=M_1N_1$. То есть поворот сохраняет расстояние между точками. Следовательно, поворот является движением.
Теорема доказана.
Видео:Геометрия 9 класс (Урок№29 - Параллельный перенос.)Скачать

Примеры задач на параллельный перенос и поворот
Построить треугольник $A_1B_1C_1$,образованный поворотом вокруг точки $B$ на угол $^0$ равнобедренного прямоугольного (с прямым углом $B)$ треугольника $ABC$.
Решение.
Очевидно, что точка $B$ перейдет сама в себя, то есть $B_1=B$. Так как поворот производится на угол, равный $^0$, а треугольник $ABC$ равнобедренный, то прямая $BA_1$ проходит через точку $L$ — середины стороны $AC$. По определению, отрезок $BA_1=BA$. Построим его (Рис. 5).
Построим теперь вершину $C_1$ по определению 2:
[angle CBC_1=^0, BC=BC_1]
Соединим все вершины треугольника $A_1B_1C_1$ (Рис. 6).
Решение закончено.
Построить параллельный перенос треугольника $ABC$ на вектор $overrightarrow$.
Решение.
Перенесем каждую вершину треугольника на вектор $overrightarrow$. Получаем треугольник $CA_1C_1$ (рис. 7).
Решение закончено.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 15 04 2021
Видео:Четырехугольник.Параллельный перенос.aviСкачать

§ 2. Параллельный перенос и поворот
Параллельный перенос
Пусть 



 
Параллельный перенос является движением, т. е. отображением плоскости на себя, сохраняющим расстояния. Докажем это. Пусть при параллельном переносе на вектор 




Поворот
Отметим на плоскости точку О (центр поворота) и зададим угол а (угол поворота). Поворотом плоскости вокруг точки О на угол α называется отображение плоскости на себя, при котором каждая точка М отображается в такую точку М1, что ОМ = ОМ1 и угол МОМ1 равен α (рис. 330). При этом точка О остаётся на месте, т. е. отображается сама в себя, а все остальные точки поворачиваются вокруг точки О в одном и том же направлении — по часовой стрелке или против часовой стрелки. На рисунке 330 изображён поворот против часовой стрелки.
 
Поворот является движением, т. е. отображением плоскости на себя, сохраняющим расстояния.
Докажем это. Пусть О — центр поворота, α — угол поворота против часовой стрелки (случай поворота по часовой стрелке рассматривается аналогично). Допустим, что при этом повороте точки М и N отображаются в точки М1 и N1 (рис. 331). Треугольники OMN и ОМ1N1 равны по двум сторонам и углу между ними: ОМ = ОМ1, ON = ON1 и ∠MON = ∠M1ON1 (для случая, изображённого на рисунке 331, каждый из этих углов равен сумме угла α и угла M1ON). Из равенства этих треугольников следует, что MN = M1N1, т. е. расстояние между точками М и N равно расстоянию между точками М, и N, (случай, когда точки О, М и N расположены на одной прямой, рассмотрите самостоятельно). Итак, поворот сохраняет расстояния между точками и поэтому представляет собой движение. Это движение можно представить себе как поворот всей плоскости вокруг данной точки О на данный угол α.
 
Задачи
1162. Начертите отрезок АВ и вектор 

1163. Начертите треугольник АВС, вектор 



1164. Даны равнобедренный треугольник АВС с основанием АС и такая точка D на прямой АС, что точка С лежит на отрезке AD. а) Постройте отрезок BlD, который получается из отрезка ВС параллельным переносом на вектор 
1165. Даны треугольник, трапеция и окружность. Постройте фигуры, которые получаются из этих фигур параллельным переносом на данный вектор 
1166. Постройте отрезок А1В1, который получается из данного отрезка АВ поворотом вокруг данного центра О: а) на 120° по часовой стрелке; б) на 75° против часовой стрелки; в) на 180°.
1167. Постройте треугольник, который получается из данного треугольника АВС поворотом вокруг точки А на угол 150° против часовой стрелки.
1168. Точка D является точкой пересечения биссектрис равностороннего треугольника АВС. Докажите, что при повороте вокруг точки D на угол 120° треугольник АВС отображается на себя.
1169. Докажите, что при повороте квадрата вокруг точки пересечения его диагоналей на угол 90° квадрат отображается на себя.
1170. Постройте окружность, которая получается из данной окружности с центром С поворотом вокруг точки О на угол 60° против часовой стрелки, если: а) точки О и С не совпадают; б) точки О и С совпадают.
1171. Постройте прямую а1, которая получается из данной прямой а поворотом вокруг точки О на угол 60° по часовой стрелке, если прямая а: а) не проходит через точку О; б) проходит через точку О.
а) Построим окружность с центром О, которая касается прямой а (объясните, как это сделать). Пусть М — точка касания. При повороте вокруг точки О эта окружность отображается на себя, а касательная а отображается на некоторую касательную а1 (объясните почему). Для построения прямой ах построим сначала точку М1, в которую отображается точка М при повороте вокруг точки О на угол 60° по часовой стрелке, а затем проведём касательную а1 к окружности в точке М1.
🔍 Видео
Поворот и параллельный перенос координатных осей. ЭллипсСкачать

9 класс, 32 урок, Параллельный переносСкачать

Видеоурок "Преобразование координат"Скачать

Движения. Симметрии. Параллельный перенос. Поворот. Урок 13. Геометрия 9 классСкачать

Поворот фигуры. Построить поворот фигур вокруг точки на угол по часовой или против часовой стрелкиСкачать

8 класс, 9 урок, Осевая и центральная симметрияСкачать

Четырехугольник.Поворот фигуры.aviСкачать

ПоворотСкачать

9 класс, 33 урок, ПоворотСкачать

Параллельный перенос точки, отрезка, треугольника, четырехугольника. Геометрия 8 классСкачать

11 класс, 12 урок, Параллельный переносСкачать

параллельный перенос и поворотСкачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

































