Содержание:
- Преобразования декартовой системы координат
- Параллельный перенос и поворот системы координат
- Полярные координаты. Замечательные кривые
- Параллельный перенос и поворот
- Параллельный перенос
- Поворот
- Готовые работы на аналогичную тему
- Примеры задач на параллельный перенос и поворот
- § 2. Параллельный перенос и поворот
- Параллельный перенос
- Поворот
- Задачи
- 🔍 Видео
Видео:ПАРАЛЛЕЛЬНЫЙ ПЕРЕНОС И ПОВОРОТ 9 класс геометрия АтанасянСкачать
Преобразования декартовой системы координат
Параллельный перенос и поворот системы координат
1. Параллельный перенос системы координат. Пусть на плоскости две декартовы системы координат, причем соответствующие оси параллельны и сонаправлены (Рис.46):
Рис. 46. Параллельный перенос одной системы координат относительно другой системы.
Систему координат
Пример:
Дана точка М(3;2) и начало новой системы координат Вычислить положение точки М в новой системе отсчета.
Решение:
Используя формулы, определяющие параллельный перенос одной системы отсчета относительно другой, получим Следовательно, точка М в новой системе отсчета имеет координаты М(4; -1).
2. Поворот системы координат. Пусть даны две системы координат (старая и новая), имеющие общее начало отсчета и повернутые относительно друг друга на угол (Рис. 47):
Рис. 47. Поворот одной системы координат относительно другой системы с общим началом координат двух систем.
Получим формулы, связывающие старые и новые координаты произвольной точки М(х; у). Из рисунка видно, что в новой системе координат координаты точки равны а координаты этой точки в старой системе координат равны Таким образом формулы перехода от новых координат произвольной точки М к старым имеет вид В матричном виде эти равенства можно записать в виде где матрица перехода
Найдем обратное преобразование системы координат, найдем матрицу обратную к матрице А:
Найдем алгебраические дополнения всех элементов
Запишем обратную матрицу
Определение: Унитарными преобразованиями называются такие преобразования, для которых определитель матрицы преобразования равен 1.
Определение: Ортогональными преобразованиями называются такие преобразования, для которых обратная матрица к матрице преобразования совпадает с транспонированной матрицей преобразования.
Таким образом, имеем Следовательно, формулы перехода от старой системы отсчета к новой системе отсчета имеют вид:
Пример:
Найти координаты точки М(1; 2) в новой системе координат, повернутой относительно старой системы отсчета на угол
Решение:
Воспользуемся полученными формулами т.е. в новой системе координат точка имеет координаты М(2; -1).
Рассмотрим применение преобразования координат:
а) Преобразовать уравнение параболы к каноническому виду. Проведем параллельный перенос системы координат получим Выберем начало отсчета новой системы координат так, чтобы выполнялись равенства тогда уравнение принимает вид Выполним поворот системы координат на угол тогда Подставим найденные соотношения в уравнение параболы где параметр параболы
Пример:
Преобразовать уравнение параболы к каноническому виду.
Решение:
Найдем начало отсчета новой системы координат после параллельного переноса т.е. точка — начало координат новой системы отсчета. В этой системе уравнение параболы имеет вид Проведем поворот системы отсчета на угол тогда
следовательно, параметр параболы р = 1/4.
б) Выяснить, какую кривую описывает функция
Проведем следующее преобразование Производя параллельный перенос системы координат, вводя обозначение
и новые координаты получим уравнение которое описывает равнобочную гиперболу.
Полярные координаты. Замечательные кривые
Пусть полярная ось совпадает с осью абсцисс Ох, а начало полярной оси (полюс полярной системы координат) совпадает с началом координат декартовой системы отсчета (Рис. 48). Любая точка М(х;у) в полярной системе координат характеризуется длиной радиус-вектора, соединяющего эту точку с началом отсчета и углом между радиус-вектором и полярной осью (угол отсчитывается против часовой стрелки).
Рис. 48. Полярная система координат.
Главными значениями угла являются значения, лежащие в интервале Из рисунка видно, что декартовы и полярные координаты связаны формулами
Рассмотрим замечательные кривые в полярной системе координат:
1. Спираль Архимеда где число (Рис. 49). Для построения кривой в полярной системе координат, разобьем декартову плоскость лучами с шагом по углу и на каждом луче отложим ему соответствующее значение р.
Рис. 49. Спираль (улитка) Архимеда.
2. Уравнение окружности: уравнение описывает окружность с центром в точке A(R; 0) и радиусом R (Рис. 50). В полярной системе координат уравнение принимает вид
Рис. 50. Окружность с центром в точке A(R; 0) и радиусом R.
3. Уравнение описывает окружность с центром в т. А(0; R) и радиусом R (Рис. 51). В полярной системе координат уравнение принимает вид
Рис. 51. Окружность с центром в точке А(0; R) и радиусом R.
4. Кардиоиды:
Рис. 52. Кардиоида
Рис. 53. Кардиоида
Аналогично выглядят кардиоиды но они вытянуты вдоль оси абсцисс Ох.
5. Петля: Величина равна нулю при
Для первого корня у = 0, а для второго и третьего — у = 9 . Следовательно, петля имеет вид
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Бесконечно малые и бесконечно большие функции
- Замечательные пределы
- Непрерывность функций и точки разрыва
- Точки разрыва и их классификация
- Экстремум функции
- Методы решения систем линейных алгебраических уравнений (СЛАУ)
- Скалярное произведение и его свойства
- Векторное и смешанное произведения векторов
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Геометрия 9 класс : Параллельный перенос и поворотСкачать
Параллельный перенос и поворот
Вы будете перенаправлены на Автор24
Видео:Параллельный перенос. Симметрия. Поворот | МатематикаСкачать
Параллельный перенос
Введем определение параллельного переноса на вектор. Пусть нам дан вектор $overrightarrow$.
Рисунок 1. Параллельный перенос
Введем следующую теорему.
Параллельный перенос является движением.
Доказательство.
Пусть нам даны точки $M и N$. Пусть при их параллельном переносе на вектор $overrightarrow$ эти точки отображаются в точки $M_1$ и $N_1$, соответственно (рис. 2).
Рисунок 2. Иллюстрация теоремы 1
Значит четырехугольник $_1N_1N$ — параллелограмм и, следовательно, $MN=M_1N_1$. То есть параллельный перенос сохраняет расстояние между точками. Следовательно, параллельный перенос является движением.
Теорема доказана.
Видео:Геометрия 9 класс (Урок№30 - Поворот.)Скачать
Поворот
Введем определение поворота вокруг точки $O$ на угол $alpha $.
Поворот вокруг точки $O$ на угол $alpha $ — отображение плоскости на себя, при котором любая точка $M$ отображается на точку $M_1$ такую, что $_1=OM, angle M_1=angle alpha $ (Рис. 3).
Рисунок 3. Поворот
Готовые работы на аналогичную тему
Введем следующую теорему.
Поворот является движением.
Доказательство.
Пусть нам даны точки $M и N$. Пусть при их повороте вокруг точки $O$ на угол $alpha $ они отображаются в точки $M_1$ и $N_1$, соответственно (рис. 4).
Рисунок 4. Иллюстрация теоремы 2
Так как, по определению 2, $_1=OM, _1=ON$ и $overrightarrow<_1>=overrightarrow$, а ,$angle MON=angle M_1ON_1$, то
Следовательно, $MN=M_1N_1$. То есть поворот сохраняет расстояние между точками. Следовательно, поворот является движением.
Теорема доказана.
Видео:Геометрия 9 класс (Урок№29 - Параллельный перенос.)Скачать
Примеры задач на параллельный перенос и поворот
Построить треугольник $A_1B_1C_1$,образованный поворотом вокруг точки $B$ на угол $^0$ равнобедренного прямоугольного (с прямым углом $B)$ треугольника $ABC$.
Решение.
Очевидно, что точка $B$ перейдет сама в себя, то есть $B_1=B$. Так как поворот производится на угол, равный $^0$, а треугольник $ABC$ равнобедренный, то прямая $BA_1$ проходит через точку $L$ — середины стороны $AC$. По определению, отрезок $BA_1=BA$. Построим его (Рис. 5).
Построим теперь вершину $C_1$ по определению 2:
[angle CBC_1=^0, BC=BC_1]
Соединим все вершины треугольника $A_1B_1C_1$ (Рис. 6).
Решение закончено.
Построить параллельный перенос треугольника $ABC$ на вектор $overrightarrow$.
Решение.
Перенесем каждую вершину треугольника на вектор $overrightarrow$. Получаем треугольник $CA_1C_1$ (рис. 7).
Решение закончено.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 15 04 2021
Видео:Четырехугольник.Параллельный перенос.aviСкачать
§ 2. Параллельный перенос и поворот
Параллельный перенос
Пусть — данный вектор. Параллельным переносом на вектор называется отображение плоскости на себя, при котором каждая точка М отображается в такую точку М1, что вектор равен вектору (рис. 329).
Параллельный перенос является движением, т. е. отображением плоскости на себя, сохраняющим расстояния. Докажем это. Пусть при параллельном переносе на вектор точки М и N отображаются в точки М1 и N1 (см. рис. 329). Так как , то . Отсюда следует, что ММ1 || NN1 и MM1 = NN1, поэтому четырёхугольник MM1N1N — параллелограмм. Следовательно, MN = M1N1, т. е. расстояние между точками М и N равно расстоянию между точками М1 и N1 (случаи, когда точки М и N расположены на прямой, параллельной вектору , рассмотрите самостоятельно). Таким образом, параллельный перенос сохраняет расстояния между точками и поэтому представляет собой движение. Наглядно это движение можно представить себе как сдвиг всей плоскости в направлении данного вектора на его длину.
Поворот
Отметим на плоскости точку О (центр поворота) и зададим угол а (угол поворота). Поворотом плоскости вокруг точки О на угол α называется отображение плоскости на себя, при котором каждая точка М отображается в такую точку М1, что ОМ = ОМ1 и угол МОМ1 равен α (рис. 330). При этом точка О остаётся на месте, т. е. отображается сама в себя, а все остальные точки поворачиваются вокруг точки О в одном и том же направлении — по часовой стрелке или против часовой стрелки. На рисунке 330 изображён поворот против часовой стрелки.
Поворот является движением, т. е. отображением плоскости на себя, сохраняющим расстояния.
Докажем это. Пусть О — центр поворота, α — угол поворота против часовой стрелки (случай поворота по часовой стрелке рассматривается аналогично). Допустим, что при этом повороте точки М и N отображаются в точки М1 и N1 (рис. 331). Треугольники OMN и ОМ1N1 равны по двум сторонам и углу между ними: ОМ = ОМ1, ON = ON1 и ∠MON = ∠M1ON1 (для случая, изображённого на рисунке 331, каждый из этих углов равен сумме угла α и угла M1ON). Из равенства этих треугольников следует, что MN = M1N1, т. е. расстояние между точками М и N равно расстоянию между точками М, и N, (случай, когда точки О, М и N расположены на одной прямой, рассмотрите самостоятельно). Итак, поворот сохраняет расстояния между точками и поэтому представляет собой движение. Это движение можно представить себе как поворот всей плоскости вокруг данной точки О на данный угол α.
Задачи
1162. Начертите отрезок АВ и вектор . Постройте отрезок А1В1, который получается из отрезка АВ параллельным переносом на вектор .
1163. Начертите треугольник АВС, вектор , который не параллелен ни одной из сторон треугольника, и вектор , паралдельный стороне АС. Постройте треугольник А1В1С1, который получается из треугольника АВС параллельным переносом: а) на вектор ; б) на вектор .
1164. Даны равнобедренный треугольник АВС с основанием АС и такая точка D на прямой АС, что точка С лежит на отрезке AD. а) Постройте отрезок BlD, который получается из отрезка ВС параллельным переносом на вектор . б) Докажите, что четырёхугольник ABB1D — равнобедренная трапеция.
1165. Даны треугольник, трапеция и окружность. Постройте фигуры, которые получаются из этих фигур параллельным переносом на данный вектор .
1166. Постройте отрезок А1В1, который получается из данного отрезка АВ поворотом вокруг данного центра О: а) на 120° по часовой стрелке; б) на 75° против часовой стрелки; в) на 180°.
1167. Постройте треугольник, который получается из данного треугольника АВС поворотом вокруг точки А на угол 150° против часовой стрелки.
1168. Точка D является точкой пересечения биссектрис равностороннего треугольника АВС. Докажите, что при повороте вокруг точки D на угол 120° треугольник АВС отображается на себя.
1169. Докажите, что при повороте квадрата вокруг точки пересечения его диагоналей на угол 90° квадрат отображается на себя.
1170. Постройте окружность, которая получается из данной окружности с центром С поворотом вокруг точки О на угол 60° против часовой стрелки, если: а) точки О и С не совпадают; б) точки О и С совпадают.
1171. Постройте прямую а1, которая получается из данной прямой а поворотом вокруг точки О на угол 60° по часовой стрелке, если прямая а: а) не проходит через точку О; б) проходит через точку О.
а) Построим окружность с центром О, которая касается прямой а (объясните, как это сделать). Пусть М — точка касания. При повороте вокруг точки О эта окружность отображается на себя, а касательная а отображается на некоторую касательную а1 (объясните почему). Для построения прямой ах построим сначала точку М1, в которую отображается точка М при повороте вокруг точки О на угол 60° по часовой стрелке, а затем проведём касательную а1 к окружности в точке М1.
🔍 Видео
Поворот и параллельный перенос координатных осей. ЭллипсСкачать
9 класс, 32 урок, Параллельный переносСкачать
Видеоурок "Преобразование координат"Скачать
Движения. Симметрии. Параллельный перенос. Поворот. Урок 13. Геометрия 9 классСкачать
Поворот фигуры. Построить поворот фигур вокруг точки на угол по часовой или против часовой стрелкиСкачать
8 класс, 9 урок, Осевая и центральная симметрияСкачать
Четырехугольник.Поворот фигуры.aviСкачать
ПоворотСкачать
9 класс, 33 урок, ПоворотСкачать
Параллельный перенос точки, отрезка, треугольника, четырехугольника. Геометрия 8 классСкачать
11 класс, 12 урок, Параллельный переносСкачать
параллельный перенос и поворотСкачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Стереометрия 10 класс. Часть 1 | МатематикаСкачать