Площадь четырехугольника по четырем координатам

Формулы площади
Содержание
  1. Основные свойства и виды
  2. Что такое четырех угольник
  3. Формулы площади квадрата
  4. Определения и соглашения
  5. Площадь четырехугольника, заданного координатами
  6. Формула вычисления площади
  7. Нахождение площади четырёхугольника различными способами и методами
  8. Особые виды четырехугольников
  9. Квадрат, прямоугольник и другие параллелограммы
  10. Пример задачи
  11. Свойство диагоналей выпуклого четырехугольника
  12. Свойства длин сторон четырехугольника
  13. Четырехугольник и окружность
  14. Вывод формул для площадей четырехугольников
  15. Калькулятор расчета площади четырехугольника
  16. Расчет площади
  17. 1. Через диагонали и угол между ними
  18. 2. По всем сторонам (формула Брахмагупты)
  19. Как рассчитать площадь четырехугольника
  20. Через диагонали и угол между ними
  21. Через стороны и противолежащие углы
  22. Площадь вписанного четырехугольника в окружность
  23. Площадь описанного четырехугольника около окружности через радиус
  24. 📽️ Видео

Видео:ГЕОМЕТРИЯ ОГЭ задание 18 найти площадь четырехугольника с заданными координатами вершинСкачать

ГЕОМЕТРИЯ ОГЭ задание 18 найти площадь четырехугольника с заданными координатами вершин

Основные свойства и виды

К выпуклым четырехугольникам можно отнести практически все известные нам фигуры, состоящие из четырех углов и сторон. Можно выделить следующие:

Все эти фигуры объединяет не только то, что они четырехугольные, но и то, что они еще и выпуклые. Достаточно просто рассмотреть схему:

Видео:Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

Что такое четырех угольник

Четырёхугольник — многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (сторон), попарно соединяющих эти точки. Площадь четырехугольника равна полупроизведению его диагоналей и угла между ними.

Четырехугольник – это многоугольник с четырьмя вершинами, три из которых не лежат на одной прямой.

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, три из которых не лежат на одной прямой, последовательно соединенная отрезками.

Площадь четырехугольника по четырем координатам

Видео:Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

Формулы площади квадрата

Площадь четырехугольника по четырем координатам

S =1d 2
2

где S – площадь квадрата,
a – длина стороны квадрата,
d – длина диагонали квадрата.

Видео:Геометрия 8. Урок 12 - Площадь четырехугольников. Формулы.Скачать

Геометрия 8. Урок 12 - Площадь четырехугольников. Формулы.

Определения и соглашения

В приведённой ниже таблице будут указаны определения и договорённости, которые будут использоваться в дальнейшем во время наших рассуждений.

  1. Площадь четырехугольника по четырем координатамЧетырёхугольник – это фигура из четырёх точек (вершин), из которых любые три не лежат на одной прямой, и четырёх отрезков (сторон) последовательно их соединяющих.
  2. Диагональ — отрезок, соединяющий вершины многоугольника не лежащие на одной стороне (её обозначение – латинская буква d).
  3. Площадь фигуры — это численное значение территории, заключённой внутри многоугольника (её обозначение – латинская буква S).
  4. Синус угла — это число равное отношению противоположного катета к гипотенузе в прямоугольном треугольнике. (её обозначение – запись sin).
  5. Косинус угла — это число равное отношению прилежащего катета к гипотенузе в прямоугольном треугольнике. В дальнейшем в статье для его обозначения будем использовать латинскую запись cos.
  6. Описанная окружность — это окружность, которой принадлежат все вершины многоугольника ( её радиуса обозается буквой R).
  7. Вписанная окружность — это окружность, которая касается всех сторон многоугольника. В дальнейшем в статье для обозначения её радиуса будем использовать латинскую букву r.
  8. Угол между сторонами a и b будем обозначать следующей записью (a,b).

Площадь четырехугольника по четырем координатам

Видео:ОГЭ по математике. Площадь четырехугольника можно вычислить (вар. 4)Скачать

ОГЭ по математике. Площадь четырехугольника можно вычислить (вар. 4)

Площадь четырехугольника, заданного координатами

Формула площади четырехугольника по координатам используется для расчета площади фигур, которые располагаются в системе координат. В этом случае для начала требуется расчет длин необходимых сторон. В зависимости от типа четырехугольника может меняться и сама формула. Рассмотрим пример расчета площади четырехугольника, используя квадрат, который лежит в системе координат XY .

Мы знаем, что все стороны фигуры равны, и формула площади квадрата находится по формуле:Площадь четырехугольника по четырем координатам
Найдем одну из сторон, к примеру, AB :Площадь четырехугольника по четырем координатам
Подставим значения в формулу:Площадь четырехугольника по четырем координатам
Знаем, что все стороны одинаковые. Подставляем значение в формулу расчета площади: Площадь четырехугольника по четырем координатам

Видео:№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).Скачать

№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).

Формула вычисления площади

Площадь (S) выпуклого четырехугольника равняется одной второй (половине) произведения его диагоналей и синуса угла между ними:

S = 1/2 * d1 * d2 * sin α

Видео:Как найти площадь треугольника, зная координаты его вершины.Скачать

Как найти площадь треугольника, зная координаты его вершины.

Нахождение площади четырёхугольника различными способами и методами

Узнаем как найти площадь четырёхугольника когда даны его диагонали и образуемый при их пересечении острый угол. Тогда площадь четырёхугольника будет вычисляться по формуле: S = 1/2*d1*d2*sin(d1,d2).

Рассмотрим пример. Пусть d1 = 15 сантиметров, d2 = 12 сантиметров, и угол между ними 30 градусов. Определим S. S = 1/2*15*12*sin30 = 1/2*15*12*1/2 = 45 сантиметров квадратных.

Теперь пусть даны стороны и противолежащие углы четырёхугольника.

Пусть a, b, c, d известные стороны многоугольника; p – его полупериметр. Корень квадратный выражения условимся обозначать как rad (от латинского radical). Формула площади четырёхугольника будет находиться по формуле: S = rad(( p − a ) ( p − b ) ( p − c ) ( p − d ) − a b c d ⋅ c o s^2( (a,b) + (c,d))/2), где p = 1/2*(a + b + c + d).

На первый взгляд, формула кажется очень сложной и вычурной. Однако ничего сложного здесь нет, что мы и докажем, рассмотрев пример. Пусть данные нашего условия следующие: a = 18 миллиметров, b = 23 миллиметра, c = 22 миллиметра, d = 17 миллиметров. Противолежащие углы будут равны (a,b) = 0,5 градуса и (c,d) = 1,5 градуса. Для начала находим полупериметр: p = 1/2*(18 + 23 + 22 + 17) = 1/2*80 = 40 миллиметров.

Теперь найдём квадрат косинуса полусуммы противолежащих углов: c o s^2( (a,b) + (c,d))/2) = c o s^2(0,5 + 1,5)/2 = c o s1*c o s1 = (1/2)*(1/2) = 0,9996.

Подставим полученные данные в нашу формулу, получим: S = rad((40 – 18)*(40 – 23)*(40 – 22)*(40 – 17) – 18*23*22*17*0,97) = rad(22*17*18*23 – 18*23*22*17*1/4) = rad((22*17*18*23*(1 – 0,9996)) = rad(154836*0,0004) = rad62 = 7,875 миллиметра квадратного.

Разберёмся как находить площадь с помощью вписанной и описанной окружностей. При решении задач данной темы имеет смысл сопровождать свои действия вспомогательным рисунком, хотя это требование и не является обязательным.

Если есть вписанная окружность и нужно найти площадь четырёхугольника формула имеет вид:

Снова возьмём на рассмотрение пример: a = 16 метров, b = 30 метров, c = 28 метров, d = 14 метров, r = 6 метров. Подставим аши значения в формулу, получим:

S = ((16 +30 + 28 + 14)/2)*6 = 44*6 = 264 метров квадратных.

Теперь займёмся вариантом когда окружность описана вокруг четырёхугольника. Здесь мы сможем воспользоваться следующей формулой:

S = rad((p − a )*( p − b )*( p − c )*( p − d ), где p равно половине длины периметра. Пускай в нашем случае стороны имеют следующие значения a = 26 дециметров, b = 35 дециметров, c = 39 дециметров, d = 30 дециметров.

Первым делом определим полупериметр, p = (26 + 35 + 39 + 30)/2 = 65 дециметров. Подставим найденное значение в нашу формулу. Получим:

S = rad((65 – 26)*(65 – 35)*(65 – 39)*(65 – 30)) = rad(39*30*26*35) = 1032 (округлённо) дециметров квадратных.

Площадь четырехугольника по четырем координатам

Видео:САМОЕ ПРОСТОЕ И БЫСТРОЕ РЕШЕНИЕ. Найдите площадь трапеции вершины которой имеют координатыСкачать

САМОЕ ПРОСТОЕ И БЫСТРОЕ РЕШЕНИЕ. Найдите площадь трапеции вершины которой имеют координаты

Особые виды четырехугольников

Четырехугольники могут обладать дополнительными свойствами, образуя особые виды геометрических фигур:

  • Параллелограмм
  • Ромб
  • Прямоугольник
  • Квадрат
  • Трапеция
  • Дельтоид
  • Контрпараллелограмм

Видео:Вычисляем угол через координаты вершинСкачать

Вычисляем угол через координаты вершин

Квадрат, прямоугольник и другие параллелограммы

Площадь четырехугольника по четырем координатам

  • Квадрат — это параллелограмм, у которого все стороны равны и пересекаются под прямым углом.
  • Прямоугольник — это параллелограмм, у которого все стороны пересекаются под прямым углом.
  • Ромб — это параллелограмм, у которого все стороны равны.

Площадь четырехугольника по четырем координатам

  • Площадь = длина х высота, или S = a х h.
  • Пример: если длина прямоугольника равна 10 см, а ширина равна 5 см, то площадь этого прямоугольника: S = 10 х 5 = 50 квадратных сантиметров.
  • Не забывайте, что площадь измеряется в квадратных единицах (квадратных метрах, квадратных сантиметрах и так далее).

Площадь четырехугольника по четырем координатам

  • Площадь = сторона х сторона, или S = a 2.
  • Пример: если сторона квадрата равна 4 см (a = 4), то площадь этого квадрата: S = a 2 = 4 х 4 = 16 квадратных сантиметров.

Площадь четырехугольника по четырем координатам

  • Площадь = (диагональ1 х диагональ2)/2, или S = (d1 × d2)/2
  • Пример: если диагонали ромба равны 6 см и 8 см, то площадь этого ромба: S = (6 х 8)/2 = 24 квадратных сантиметров.

Площадь четырехугольника по четырем координатам

  • Пример: если длина ромба равна 10 см, а его высота равна 3 см, то площадь такого ромба равна 10 х 3 = 30 квадратных сантиметров.

Площадь четырехугольника по четырем координатам

  • Площадь = сторона х высоту, или S = a × h
  • Площадь = (диагональ1 × диагональ2)/2, или S = (d1 × d2)/2
  • Пример: если сторона квадрата равна 4 см, то его площадь равна 4 х 4 = 16 квадратных сантиметров.
  • Пример: диагонали квадрата равны по 10 см. Вы можете найти площадь этого квадрата по формуле: (10 х 10)/2 = 100/2 = 50 квадратных сантиметров.

Видео:Найдите площадь треугольника, вершины которого имеют координаты (1;7), (4;7), (9;9).Скачать

Найдите площадь треугольника, вершины которого имеют координаты (1;7), (4;7), (9;9).

Пример задачи

Найдите площадь выпуклого четырехугольника, если его диагонали равны 5 и 9 см, а угол между ними составляет 30°.

Решение:
Подставляем в формулу известные нам значения и получаем: S = 1/2 * 5 см * 9 см * sin 30° = 11,25 см 2 .

Видео:Площадь четырёхугольника через диагоналиСкачать

Площадь четырёхугольника через диагонали

Свойство диагоналей выпуклого четырехугольника

Диагонали выпуклого четырехугольника пересекаются. Действительно, это явление можно наблюдать визуально, достаточно взглянуть на рисунок:

На рисунке слева изображен невыпуклый четырехугольник или четырехсторонник. Как угодно. Как видно, диагонали не пересекаются, по крайней мере, не все. Справа изображен выпуклый четырехугольник. Тут уже наблюдается свойство диагоналей пересекаться. Это же свойство можно считать признаком выпуклости четырехугольника.

Видео:№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)Скачать

№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)

Свойства длин сторон четырехугольника

Модуль разности любых двух сторон четырёхугольника не превосходит суммы двух других его сторон.

Важно. Неравенство верно для любой комбинации сторон четырехугольника. Рисунок приведен исключительно для облегчения восприятия.

В любом четырёхугольнике сумма длин трёх его сторон не меньше длины четвёртой стороны.

Важно. При решении задач в пределах школьной программы можно использовать строгое неравенство ( a, b, c, d формула полупериметра будет выглядеть так: Площадь четырехугольника по четырем координатам
Зная стороны, выводим формулу. Площадь четырехугольника представляет собой корень из произведения разности полупериметра с длиной каждой стороны:

Площадь четырехугольника по четырем координатам

Видео:Высшая математика. 3 урок. Аналитическая геометрия. Вычисление площади треугольникаСкачать

Высшая математика. 3 урок. Аналитическая геометрия. Вычисление площади треугольника

Четырехугольник и окружность

Четырехугольник, описанный вокруг окружности (окружность, вписанная в четырехугольник).

Главное свойство описанного четырехугольника:

Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин противоположных сторон равны.

Четырехугольник, вписанный в окружность (окружность, описанная вокруг четырехугольника)

Главное свойство вписанного четырехугольника:

Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы противоположных углов равны 180 градусов.

Видео:Вычисление медианы, высоты и угла по координатам вершинСкачать

Вычисление медианы, высоты и угла по координатам вершин

Вывод формул для площадей четырехугольников

Утверждение 1 . Площадь выпуклого четырёхугольника можно найти по формуле

Площадь четырехугольника по четырем координатам

где d1 и d2 – диагонали четырёхугольника , а φ – любой из четырёх углов между ними (рис. 1).

Площадь четырехугольника по четырем координатам

Доказательство . В соответствии с рисунком 1 справедливо равенство:

Площадь четырехугольника по четырем координатам

Площадь четырехугольника по четырем координатам

Площадь четырехугольника по четырем координатам

Площадь четырехугольника по четырем координатам

что и требовалось доказать.

Утверждение 2 . Площадь параллелограмма параллелограмма можно найти по формуле

где a – сторона параллелограмма, а ha – высота высота высота , опущенная на эту сторону (рис. 2).

Площадь четырехугольника по четырем координатам

Доказательство . Поскольку прямоугольный треугольник DFC равен прямоугольному треугольнику AEB (рис.26), то четырёхугольник AEFB – прямоугольник. Поэтому

что и требовалось доказать.

Утверждение 3 .Площадь параллелограмма параллелограмма можно найти по формуле

где a и b – смежные стороны параллелограмма, а φ – угол между ними (рис. 3).

Площадь четырехугольника по четырем координатам

то, в силу утверждения 2, справедлива формула

что и требовалось доказать.

Утверждение 4 . Площадь ромба ромба можно найти по формуле

Площадь четырехугольника по четырем координатам,

где r – радиус вписанной в ромб окружности , а φ – любой из четырёх углов ромба (рис.4).

Площадь четырехугольника по четырем координатам

Доказательство . Поскольку каждая из диагоналей ромба является биссектрисой угла , а каждая точка биссектрисы угла равноудалена от сторон угла, то точка пересечения диагоналей ромба равноудалена от всех сторон ромба и является центром вписанной в ромб окружности . Отсюда следует, в частности, что высота ромба в 2 раза больше радиуса вписанной окружности (рис.4). Поэтому

Площадь четырехугольника по четырем координатам

Площадь четырехугольника по четырем координатам

что и требовалось доказать.

Утверждение 5 . Площадь трапеции можно найти по формуле

Площадь четырехугольника по четырем координатам,

где a и b – основания трапеции, а h – высота высота высота (рис.5).

Площадь четырехугольника по четырем координатам

Площадь четырехугольника по четырем координатам

Доказательство . Проведём прямую BE через вершину B трапеции и середину E боковой стороны CD . Точку пересечения прямых AD и BE обозначим буквой F (рис. 5). Поскольку треугольник BCE равен треугольнику EDF (по стороне и прилежащим к ней углам) , то площадь трапеции ABCD равна площади треугольника ABF . Поэтому

Площадь четырехугольника по четырем координатам

Площадь четырехугольника по четырем координатам

что и требовалось доказать.

Утверждение 6 . Площадь трапеции трапеции можно найти по формуле

Площадь четырехугольника по четырем координатам

где a и b – основания, а c и d – боковые стороны трапеции ,
Площадь четырехугольника по четырем координатам
(рис.6).

Площадь четырехугольника по четырем координатам

Доказательство . Воспользовавшись теоремой Пифагора , составим следующую систему уравнений с неизвестными x, y, h (рис. 6):

Площадь четырехугольника по четырем координатам

Площадь четырехугольника по четырем координатам

Площадь четырехугольника по четырем координатам

Площадь четырехугольника по четырем координатам

Площадь четырехугольника по четырем координатам

Площадь четырехугольника по четырем координатам

Площадь четырехугольника по четырем координатам,

что и требовалось доказать.

Утверждение 7 . Площадь дельтоида , дельтоида , можно найти по формуле:

где a и b – неравные стороны дельтоида, а r – радиус вписанной в дельтоид окружности (рис.7).

Площадь четырехугольника по четырем координатам

Доказательство . Докажем сначала, что в каждый дельтоид можно вписать окружность. Для этого заметим, что треугольники ABD и BCD равны в силу признака равенства треугольников «По трём сторонам» (рис. 7). Отсюда вытекает, что диагональ BD является биссектрисой углов B и D , а биссектрисы углов A и C пересекаются в некоторой точке O , лежащей на диагонали BD . Точка O и является центром вписанной в дельтоид окружности.

Если r – радиус вписанной в дельтоид окружности, то

Видео:№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнениеСкачать

№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнение

Калькулятор расчета площади четырехугольника

В публикации представлены онлайн-калькуляторы и формулы для расчета площади выпуклого четырехугольника по разным исходным данным: через диагонали и угол между ними, по всем сторонам (если вокруг можно описать окружность), по полупериметру и радиусу вписанной окружности.

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Расчет площади

Инструкция по использованию: введите известные значения, затем нажмите кнопку “Рассчитать”. В результате будет вычислена площадь фигуры с учетом указанных данных.

1. Через диагонали и угол между ними

Формула расчета

Площадь четырехугольника по четырем координатам

2. По всем сторонам (формула Брахмагупты)

Примечание: Если вокруг четырехугольника можно описать окружность.

Формула расчета

Площадь четырехугольника по четырем координатам

p – полупериметр четырехугольника, равняется:

Видео:Найдите площадь треугольника на рисунке ★ Два способа решенияСкачать

Найдите площадь треугольника на рисунке ★ Два способа решения

Как рассчитать площадь четырехугольника

На данной странице калькулятор поможет рассчитать площадь четырехугольника онлайн. Для расчета задайте длину сторон, длины диагоналей и угол между ними, противолежащие углы, радиус окружности.

Четырёхугольник — многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (сторон), попарно соединяющих эти точки.

Через диагонали и угол между ними

Площадь четырехугольника по четырем координатам

Формула для нахождения площади четырехугольников через диагонали и угол между ними:

Через стороны и противолежащие углы

Площадь четырехугольника по четырем координатам

Формула для нахождения площади четырехугольников через стороны и противолежащие углы:

Площадь вписанного четырехугольника в окружность

Площадь четырехугольника по четырем координатам

Формула Брахмагупты для нахождения площади вписанного четырехугольника в окружность:

Площадь описанного четырехугольника около окружности через радиус

Площадь четырехугольника по четырем координатам

Формула для нахождения площади описанного четырехугольника около окружности через радиус:

📽️ Видео

Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

ЕГЭ. Математика. База . Дан координаты вершин треугольника, найти площадь треугольникаСкачать

ЕГЭ. Математика. База . Дан координаты вершин треугольника, найти площадь треугольника

9 класс, 12 урок, Теорема о площади треугольникаСкачать

9 класс, 12 урок, Теорема о площади треугольника
Поделиться или сохранить к себе: