- Угол между векторами
- Ортогональные проекции векторов
- Алгебраическое значение длины проекции
- Ортогональные векторы и условие ортогональности
- Ортогональные векторы: определение и условие
- Примеры решения задач на ортогональность векторов
- Плоские задачи на ортогональность векторов
- Примеры пространственных задач на ортогональность векторов
- Ортогональное дополнение. Ортогональная проекция вектора на подпространство
- 📹 Видео
Видео:Ортогональная проекция и ортогональная составляющая. ТемаСкачать
Угол между векторами
Углом между двумя ненулевыми векторами называется угол между равными им векторами, имеющими общее начало, не превосходящий по величине числа .
Пусть в пространстве даны два ненулевых вектора и (рис.1.22). Построим равные им векторы и . На плоскости, содержащей лучи и , получим два угла . Меньший из них, величина которого не превосходит , принимается за угол между векторами и .
Поскольку направление нулевого вектора не определено, то не определен и угол между двумя векторами, если хотя бы один из них нулевой. Из определения следует, например, что угол между ненулевыми коллинеарными векторами либо равен нулю (если векторы одинаково направлены), либо равен (если векторы противоположно направлены).
Видео:2 42 Ортогональность векторовСкачать
Ортогональные проекции векторов
Движение по любой прямой может быть в двух направлениях. Ориентированной прямой называется прямая, на которой выбрано направление, т.е. одно из направлений считается положительным, а противоположное — отрицательным. Для измерения длин отрезков на прямой задается масштабный отрезок, который принимается за единицу.
Ориентированная прямая с заданным масштабным отрезком называется осью.
Любой ненулевой вектор , принадлежащий прямой, называется направляющим вектором для данной прямой, поскольку задает на ней ориентацию. Направление вектора принимается за положительное, а направление противоположного вектора — за отрицательное. Кроме того, длину вектора — можно принять за величину масштабного отрезка на этой прямой. Поэтому можно сказать, что любой ненулевой вектор определяет ось — прямую, содержащую этот вектор, задавая на ней направление и масштабный отрезок.
Ортогональной проекцией вектора на ось, задаваемую вектором , называется его проекция на ось вдоль прямой (или вдоль плоскости), перпендикулярной данной оси. Ортогональную проекцию вектора на ось, задаваемую вектором , будем обозначать .
Ортогональную проекцию вектора на прямую (см. разд. 1.2.2 и рис. 1.13) будем обозначать .
Ортогональную проекцию вектора а на плоскость (см. разд. 1.2.2 и рис. 1.14) будем обозначать .
Разность между вектором и его ортогональной проекцией называют ортогональной составляющей:
— — ортогональная составляющая вектора относительно вектора ;
— — ортогональная составляющая вектора относительно прямой ;
— — ортогональная составляющая вектора относительно плоскости .
На рис. 1.23 изображены ортогональные проекции вектора :
— на прямую (или на ось , задаваемую вектором ) вдоль прямой (рис.1.23,а);
— на прямую (или на ось , задаваемую вектором ) вдоль плоскости (рис.1.23,б);
— на плоскость вдоль прямой (рис.1.23,в).
На рис. 1.23 изображены ортогональные составляющие вектора :
— относительно оси (вектора ): (рис.1.23,а);
— относительно плоскости (рис.1.23,в).
Для ортогональных проекций справедлива следующая теорема (см. теорему 1.1 в разд. 1.5).
Теорема 1.2 (об ортогональных проекциях вектора).
1. Если на плоскости заданы две взаимно перпендикулярные прямые и , то любой вектор на плоскости можно однозначно представить в виде суммы своих ортогональных проекций на эти прямые, т.е. (рис. 1.24,а).
2. Если в пространстве заданы три попарно перпендикулярные прямые и , пересекающиеся в одной точке, то любой вектор в пространстве можно однозначно представить в виде суммы своих ортогональных проекций на эти прямые, т.е. (рис. 1.24,6).
3. Квадрат длины вектора на плоскости или в пространстве равен сумме квадратов длин своих ортогональных проекций, т.е.
Первые два утверждения представляют собой частные случаи теоремы 1.1. Третье утверждение следует из теоремы Пифагора (для треугольника (рис. 1.24,а) или треугольников и (рис. 1.24,6)).
В формулировке теоремы 1.2 прямые можно заменить осями, задаваемыми попарно ортогональными векторами.
На рис.1.24,а проекции вектора на оси одновременно являются ортогональными составляющими: и . На рис. 1.24,6 вектор является проекцией вектора на плоскость , содержащую прямые и : , а вектор является ортогональной составляющей вектора относительно плоскости .
Видео:Ортогональная проекция на подпространство. ТемаСкачать
Алгебраическое значение длины проекции
Пусть – угол между ненулевым вектором и осью, задаваемой вектором , т.е. угол между ненулевыми векторами и .
Алгебраическим значением длины ортогональной проекции вектора на ось, задаваемую вектором , называется длина его ортогональной проекции , взятая с положительным знаком, если угол не превышает , и с отрицательным знаком, если угол больше , т.е.:
Например, для проекций, изображенных на рис. 1.25, 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAE8AAAAVBAMAAAD1D64kAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMA/cBBpYEhURAxkWFx4MHQtTUEJQAAAVlJREFUKM9jYKAAsBGrkKsATaB5AhZVRUpK+mKoQty3/LCpZDCu3YAqYDiB9QZWq4tBBHsEnO/PwCaNx6X7l8FYcgwMIgwMJlomWhOYnZarNECFmZ3KDMAMOzeogBQDgzwDQ46gZ4s420GRwANQhRsNHB9AWHbOEIWiDAyCDGDFFxuYJKZCTWSWZjAMgOoxUUZWKMTAsLCA6QNIqBWIeQWAZsJcl/IYVWFgAJMCA0No6FpQWDgwOMI9lHId6kYUhQwMJ4D44AGGe3B1YKvZ5MAeBylUnABRCAIHDdhEmZCdyMBwiYFNBkgJTuAWYeAHupEtBBTHiQX94qVgeSNPWDgk8IAiVd7LMYBVUFCBYVMCyFieW55fNEDS+9zgieTOQgOw1ZAY5xC3WQBJZJygkGJfhoikORUMEDeCAbvoTvypVB4a0twK+FPppkcvoTpucDoQl7CnRuOTBQA/mUGNQvQK+QAAAABJRU5ErkJggg==» style=»vertical-align: middle;» />, поскольку угол между векторами и острый, a , так как угол между векторами и тупой.
Некоторые свойства проекций векторов переносятся на алгебраические значения их длин, в частности:
1. — алгебраическое значение длины ортогональной проекции суммы векторов равно сумме алгебраических значений длин ортогональных проекций слагаемых;
2. — алгебраическое значение длины ортогональной проекции произведения вектора на число равно произведению этого числа на алгебраическое значение длины ортогональной проекции вектора
1. Из определения алгебраического значения длины ортогональной проекции следует (см. также рис.1.25), что , т.е. алгебраическое значение длины ортогональной проекции ненулевого вектора на ось равна произведению длины этого вектора на косинус угла между вектором и осью.
Ортогональную проекцию вектора на ось, задаваемую вектором , можно представить в виде
Если — единичный вектор, то .
2. Равенство можно использовать как определение косинуса угла между ненулевыми векторами и (или, что то же самое, косинуса угла между осями, заданными ненулевыми векторами и (рис. 1.26)).
3. Углом между ненулевым вектором и прямой называется угол между вектором и его ортогональной проекцией на прямую . Величина угла может быть найдена по формуле
4. Углом между ненулевым вектором и плоскостью называется угол между вектором и его ортогональной проекцией на плоскость . Величина угла может быть найдена по формуле
Пример 1.7. Основания и равнобокой трапеции равны и соответственно; точка — середина стороны (рис. 1.27). Найти алгебраические значения длин ортогональных проекций векторов и на ось, задаваемую вектором .
Решение. Пусть — высота трапеции, — точка пересечения прямых и . По свойству равнобокой трапеции ; из равенства треугольников и .
Обозначим через искомые алгебраические значения длин ортогональных проекций.Тогда из равенств
и свойства 1 алгебраических значений длин проекций следует:
Видео:Разложение вектора по базису. 9 класс.Скачать
Ортогональные векторы и условие ортогональности
В данной статье мы расскажем, что такое ортогональные векторы, какие существуют условия ортогональности, а также приведем подробные примеры для решения задач с ортогональными векторами.
Видео:Ортогональная проекция и ортогональная составляющая. ПримерСкачать
Ортогональные векторы: определение и условие
Ортогональные векторы — это векторы a ¯ и b ¯ , угол между которыми равен 90 0 .
Необходимое условие для ортогональности векторов — два вектора a ¯ и b ¯ являются ортогональными (перпендикулярными), если их скалярное произведение равно нулю.
Видео:Проекция вектора на вектор.Скачать
Примеры решения задач на ортогональность векторов
Плоские задачи на ортогональность векторов
Если дана плоская задача, то ортогональность для векторов a ¯ = и b ¯ = записывают следующим образом:
a ¯ × b ¯ = a x × b x + a y × b y = 0
Задача 1. Докажем, что векторы a ¯ = и b ¯ = ортогональны.
Как решить?
Находим скалярное произведение данных векторов:
a ¯ × b ¯ = 1 × 2 + 2 × ( — 1 ) = 2 — 2 = 0
Ответ: поскольку произведение равняется нулю, то векторы являются ортогональными.
Задача 2. Докажем, что векторы a ¯ = и b ¯ = ортогональны.
Как решить?
Находим скалярное произведение данных векторов:
a ¯ × b ¯ = 3 × 7 + ( — 1 ) × 5 = 21 — 5 = 16
Ответ: поскольку скалярное произведение не равняется нулю, то и векторы не являются ортогональными.
Задача 3. Найдем значение числа n , при котором векторы a ¯ = и b ¯ = будут ортогональными.
Как решить?
Найдем скалярное произведение данных векторов:
a ¯ × b ¯ = 2 × n + 4 × 1 = 2 n + 4 2 n + 4 = 0 2 n = — 4 n = — 2
Ответ: векторы являются ортогональными при значении n = 2 .
Видео:A.7.3 Проекции векторов. А вот и датасайнс!Скачать
Примеры пространственных задач на ортогональность векторов
При решении пространственной задачи на ортогональность векторов a ¯ = и b ¯ = условие записывается следующим образом: a ¯ × b ¯ = a x × b x + a y × b y + a z × b z = 0 .
Задача 4. Докажем, что векторы a ¯ = и b ¯ = являются ортогональными.
Как решить?
Находим скалярное произведение данных векторов:
a ¯ × b ¯ = 1 × 2 + 2 × ( — 1 ) + 0 × 10 = 2 — 2 = 0
Ответ: поскольку произведение векторов равняется нулю, то они являются ортогональными.
Задача 5. Найдем значение числа n , при котором векторы a ¯ = и b ¯ = будут являться ортогональными.
Как решить?
Находим скалярное произведение данных векторов:
a ¯ × b ¯ = 2 × n + 4 × 1 + 1 × ( — 8 ) = 2 n + 4 — 8 = 2 n — 4 2 n — 4 = 0 2 n = 4 n = 2
Ответ: векторы a ¯ и b ¯ будут ортогональными при значении n = 2 .
Видео:Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать
Ортогональное дополнение. Ортогональная проекция вектора на подпространство
Пусть Е — евклидово пространство, а L — его подпространство. Множество L 1 — векторов в Е, ортогональных к каждому вектору подпространства L, называют ортогональным дополнением к подпространству L.
Теорема 8.6. Ортогональное дополнение IA к подпространству L евклидова пространства Е является подпространством в Е.
> Пусть уi,y2 € ZA. Тогда для любого вектора х ? L имеем: (ж, г/1) = 0 и (х,у2) = 0. Следовательно,
т.е. вектор у + у2 ортогонален любому вектору х € L. Это означает, что У1+У2 € ZA. Мы доказали, что сумма любых двух векторов множества ZA принадлежит ZA. Аналогично для любого действительного числа Л и любого х € L имеем:
т.е. вектор Л у ортогонален любому вектору х е L, а значит, принадлежит ZA. Таким образом, множество ZA замкнуто относительно сложения векторов и умножения векторов на числа и, следовательно, является подпространством. ?
Теорема 8.7. Конечномерное евклидово пространство Е является прямой суммой любого своего подпространства L и его ортогонального дополнения ZA, т.е. ортогональное дополнение к подпространству является его прямым дополнением.
> Пусть в пространстве L выбран ортогональный базис, состоящий из векторов ai, 02, . а&. Дополним его до ортогонального базиса пространства Е векторами fk+i, fk+2, •••, fn и по построенному базису
разложим произвольный вектор х из Е. Тогда получим где положено
Вектор у принадлежит подпространству Z, поскольку он является линейной комбинацией векторов базиса в L. Покажем, что вектор z принадлежит ортогональному дополнению LА Для этого замечаем, что по построению векторы fk+i, fk+2, fn ортогональны базисным
векторам ai, Это очевидное следствие теоремы о размерности суммы подпространств (см. теорему 4.23). ?
Следствие 8.3. Ортогональным дополнением к подпространству ZA является подпространство L.
> Так как каждый вектор из L ортогонален каждому вектору из ZA, то подпространство L содержится в (ZA)A Кроме того, выполняются соотношения Е = L 0 ZA, Е = (L— L )- L ф ZA, и по предыдущему следствию подпространства L и (ZA) 1 — имеют одинаковую размерность. Поэтому эти подпространства совпадают. ?
Следствие 8.4. Если L — подпространство в евклидовом пространстве Е, то любой вектор х € Е имеет разложение
где хо G L, х 1 — G /А. Такое разложение единственно.
> Это утверждение — фактически расшифровка утверждения, что Е = L Ф ZA. ?
Пример 8.9. В четырехмерном пространстве Е± скалярное произведение в заданном базисе определено формулой (8.5). Построить ортогональное дополнение ZA для подпространства L = (а^аг), где a, = (1,1,1, l) r , а2 = (1, -1,1,1) т .
Решение. Векторы а и а2 составляют базис в L. Дополним эту систему до базиса в Е± векторами Ъ и 62, удовлетворяющими условиям
и положим L = (61,62)- Векторы 61, 62 являются решениями системы из двух уравнений (ai,x) = 0, (а,2,х) = 0, и в качестве их можно взять любую фундаментальную систему решений, например, 61 = (—1,0,1,0) т , 62 = (—1,0,0,1) т . Из выбора векторов 61 и 62 следует, что они составляют базис в L L , т.е. L = L L . ?
Пусть L — подпространство евклидова пространства Е. Каждый вектор у ? Е может быть единственным способом представлен в виде
где уо ? L, а вектор у 1 — ортогонален к каждому вектору из L, т.е. у 1 — ? L х . Вектор уо называют ортогональной проекцией вектора у на пространство L и обозначают прьУ, а вектор y L называют ортогональной составляющей вектора у. Очевидно, что если у ? L, то прьу = у, и, наоборот, если прьу = : Действительно, пусть у — произвольный вектор, опущенный из конца вектора х на подпространство L и х 1 — — ортогональная составляющая вектора х, т.е. перпендикуляр, опущенный из конца вектора х на подпространство L. Тогда
поскольку концы векторов у их 1 лежат в L. Поэтому
так как векторы у — х 1 — их 1 ортогональны. ?
Доказанные утверждения является естественным обобщением известного из элементарной геометрии утверждения о том, что перпендикуляр короче любой наклонной, опущенной из той же точки на плоскость.
Длину ортогональной составляющей х 1 — вектора х принимают за кратчайшее расстояние от вектора х до подпространства L.
Ортогональная проекция вектора у на подпространство L является частным случаем проекции вектора на подпространство параллельно подпространству L2, являющемуся прямым дополнением к L (см. разд. 4.11). В случае ортогональной проекции Ь2 = Ь 1 .
На практике при отыскании ортогональной проекции вектора х на подпространство L = (ai, а2, •••?> &fc) поступают следующим образом. В разложении
вектора х на ортогональную проекцию жо = npLT и ортогональную составляющую х 1 — вектор Xq можно представить в виде линейной комбинации
Тогда равенство х = Хо + х 1 принимает вид:
Для отыскания коэффициентов oi, 02, . о& умножим равенство (8.16) скалярно на векторы а, а2, . ак- Учитывая, что (а^аг 1- ) = = (а2,х ± ) = . = (ак,х?*?) = 0, получаем систему линейных уравнений
относительно неизвестных оц, а2, . а к. Из этой системы находят коэффициенты oi, а2, . о^. В матричной форме равенство (8.15) и система (8.17) записываются в виде
где А = (oi, а2. а*,) — матрица, для которой столбцами являются столбцы координат векторов а, а2, . а&; о — (01,02, . о*;) т — столбец высоты к. Использование системы (8.17), или, что тоже самое системы (8.19), указывает на то (см. п.8.21), что отыскание коэффициентов ai, а2, . ак для равенства (8.15) равносильно решению методом наименьших квадратов системы А о = х с неизвестным столбцом
Если система векторов oi, 2, • ••, ftfc линейно независимая, то в равенстве (8.19) матрица А т А невырожденная, так как она представляет собой матрицу Грама этой системы векторов (см. теорему 8.1). В этом случае из уравнения (8.19) однозначно определяется столбец а:
Учитывая равенство (8.18), заключаем, что
Пример 8.10. Для вектора х = (3,6,0) т найти ортогональную проекцию Xq на подпространство L = (а^аг) и ортогональную составляющую т х , если ay = (1, —1,0) т , т .
Решение. Запишем xq = npL.x в виде хд = ау ау + Коэффициенты ау и «2 можно найти, решив систему (8.17), которая в данном случае имеет вид:
Вычислим все скалярные произведения. В результате получим
Решая систему относительно неизвестных од иаг, находим, что од = = су2 = 3. Таким образом, пр/,т = Зау + Заг = (0,3,3) т и х^ = = х — npLT = (3,3, —3) т .
Поскольку векторы а у, а2 линейно независимые, то можно также воспользоваться формулой (8.20). Вычислив
Заметим, что если е = (ei, е2,еп) — ортоиормированный базис в евклидовом пространстве Е, а подпространство L является линейной оболочкой части базисных векторов, например, L = (ei, е2. е*,), то для любого вектора
ортогональная проекция прь-т совпадает с суммой слагаемых в разложении х по базису, соответствующих векторам, порождающим L. а ортогональная проекция — с суммой всех остальных слагаемых, т.е.
Например, для вектора х = (1,2, 3,4,5) т проекция на подпространство L = (б1,е2,ез) равна Xq = (1,2,3,0,0) т , и его ортогональная составляющая х 1 — = (0,0,0,4, 5) т . ?
📹 Видео
Высшая математика. Линейные пространства. Векторы. БазисСкачать
Ортогональная проекция вектора на прямую и вектора на ось. Теоремы о проекцияхСкачать
Построение проекции вектора на осьСкачать
ОртогональностьСкачать
Ортогональные системы векторов. Процесс ортогонализации (задача 1357)Скачать
Как разложить вектор по базису - bezbotvyСкачать
Ортогональная проекция на подпространство. ПримерСкачать
Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Ортогональность. ТемаСкачать
Алгебра и геометрия 12. Ортогональные системы векторов в пространствах со скалярным произведениемСкачать
Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать