Свойства диагоналей в выпуклом четырехугольнике

Понятие выпуклого четырехугольника, его свойства и признаки

Выпуклый четырехугольник — это фигура, состоящая из четырех сторон, соединенных между собой в вершинах, образующих вместе со сторонами четыре угла, при этом сам четырехугольник всегда находится в одной плоскости относительно прямой, на которой лежит одна из его сторон. Другими словами, вся фигура находится по одну сторону от любой из ее сторон.

Как видно, определение довольно легко запоминающееся.

Содержание
  1. Выпуклый четырехугольник
  2. Основные свойства и виды
  3. Является ли параллелограмм выпуклым четырехугольником?
  4. Свойство диагоналей выпуклого четырехугольника
  5. Другие свойства и признаки выпуклости четырехугольника
  6. Четырехугольники
  7. теория по математике 📈 планиметрия
  8. Выпуклый четырехугольник
  9. Виды и свойства выпуклых четырехугольников
  10. Прямоугольник
  11. Квадрат
  12. Параллелограмм
  13. Трапеция
  14. Виды трапеций
  15. Средняя линия трапеции
  16. Четырехугольник — виды и свойства с примерами решения
  17. Внутренние и внешние углы четырехугольника
  18. Сумма внутренних углов выпуклого четырёхугольника
  19. Сумма внешних углов выпуклого четырёхугольника
  20. Параллелограмм
  21. Параллелограмм и его свойства
  22. Признаки параллелограмма
  23. Прямоугольник
  24. Признак прямоугольника
  25. Ромб и квадрат
  26. Свойства ромба
  27. Трапеция
  28. Средняя линия треугольника
  29. Средняя линия трапеции
  30. Координаты середины отрезка
  31. Теорема Пифагора
  32. Справочный материал по четырёхугольнику
  33. Пример №1
  34. Признаки параллелограмма
  35. Пример №2 (признак параллелограмма).
  36. Прямоугольник
  37. Пример №3 (признак прямоугольника).
  38. Ромб. Квадрат
  39. Пример №4 (признак ромба)
  40. Теорема Фалеса. Средняя линия треугольника
  41. Пример №5
  42. Пример №6
  43. Трапеция
  44. Пример №7 (свойство равнобедренной трапеции).
  45. Центральные и вписанные углы
  46. Пример №8
  47. Вписанные и описанные четырёхугольники
  48. Пример №9
  49. Пример №10
  50. 🎬 Видео

Видео:Свойства диагоналей прямоугольника. Свойства диагоналей квадрата | Математика 4 класс #9 | ИнфоурокСкачать

Свойства диагоналей прямоугольника. Свойства диагоналей квадрата | Математика 4 класс #9 | Инфоурок

Выпуклый четырехугольник

Основные свойства и виды

К выпуклым четырехугольникам можно отнести практически все известные нам фигуры, состоящие из четырех углов и сторон. Можно выделить следующие:

Это интересно: что микроэкономика изучает, кратко об основателях и основах науки.

Все эти фигуры объединяет не только то, что они четырехугольные, но и то, что они еще и выпуклые. Достаточно просто рассмотреть схему:

На рисунке изображена выпуклая трапеция. Тут видно, что трапеция находится на одной плоскости или по одну сторону от отрезка [AB]. Если провести аналогичные действия, можно выяснить, что и в случае со всеми остальными сторонами трапеция является выпуклой.

Является ли параллелограмм выпуклым четырехугольником?

Свойства диагоналей в выпуклом четырехугольникеВыше показано изображение параллелограмма. Как видно из рисунка, параллелограмм также является выпуклым. Если посмотреть на фигуру относительно прямых, на которых лежат отрезки AB, BC, CD и AD, то становится понятно, что она всегда находится на одной плоскости от этих прямых. Основными же признаками параллелограмма является то, что его стороны попарно параллельны и равны так же, как и противоположные углы равны между собой.

Теперь, представьте себе квадрат или прямоугольник. По своим основным свойствам они являются еще и параллелограммами, то есть все их стороны расположены попарно параллельно. Только в случае с прямоугольником длина сторон может быть разной, а углы прямые (равные 90 градусам), квадрат — это прямоугольник, у которого все стороны равны и углы также прямые, а у параллелограмма длины сторон и углы могут быть разными.

В итоге, сумма всех четырех углов четырехугольника должна быть равна 360 градусам. Легче всего это определить по прямоугольнику: все четыре угла прямоугольника прямые, то есть равны 90 градусам. Сумма этих 90-градусных углов дает 360 градусов, другими словами, если сложить 90 градусов 4 раза, получится необходимый результат.

Свойство диагоналей выпуклого четырехугольника

Диагонали выпуклого четырехугольника пересекаются. Действительно, это явление можно наблюдать визуально, достаточно взглянуть на рисунок:

На рисунке слева изображен невыпуклый четырехугольник или четырехсторонник. Как угодно. Как видно, диагонали не пересекаются, по крайней мере, не все. Справа изображен выпуклый четырехугольник. Тут уже наблюдается свойство диагоналей пересекаться. Это же свойство можно считать признаком выпуклости четырехугольника.

Другие свойства и признаки выпуклости четырехугольника

Свойства диагоналей в выпуклом четырехугольникеКонкретно по этому термину очень сложно назвать какие-то определенные свойства и признаки. Легче обособить по различным видам четырехугольников такого типа. Начать можно с параллелограмма. Мы уже знаем, что это четырехугольная фигура, стороны которой попарно параллельны и равны. При этом, сюда же включается свойство диагоналей параллелограмма пересекаться между собой, а также сам по себе признак выпуклости фигуры: параллелограмм находится всегда в одной плоскости и по одну сторону относительно любой из своих сторон.

Итак, известны основные признаки и свойства:

  1. сумма углов четырехугольника равна 360 градусам;
  2. диагонали фигур пересекаются в одной точке.

Далее рассмотрим каждый четырехугольник по отдельности.

Прямоугольник. Эта фигура имеет все те же свойства и признаки, что и параллелограмм, но при этом все углы его равны 90 градусам. Отсюда и название — прямоугольник.

Квадрат, тот же параллелограмм, но углы его прямые как у прямоугольника. Из-за этого квадрат в редких случаях называют прямоугольником. Но главным отличительным признаком квадрата помимо уже перечисленных выше, является то, что все четыре его стороны равны.

Трапеция — очень интересная фигура. Это тоже четырехугольник и тоже выпуклый. В этой статье трапеция уже рассматривалась на примере рисунка. Понятно, что она тоже выпуклая. Главным отличием, а соответственно признаком трапеции является то, что ее стороны могут быть абсолютно не равны друг другу по длине, а также ее углы по значению. При этом фигура всегда остается на одной плоскости относительно любой из прямых, которая соединяет любые две ее вершины по образующим фигуру отрезкам.

Ромб — не менее интересная фигура. Отчасти ромбом можно считать квадрат. Признаком ромба является тот факт, что его диагонали не только пересекаются, но и делят углы ромба пополам, а сами диагонали пересекаются под прямым углом, то есть, они перпендикулярны. В случае, если длины сторон ромба равны, то диагонали тоже делятся пополам при пересечении.

Дельтоиды или выпуклые ромбоиды (ромбы) могут иметь разную длину сторон. Но при этом все равно сохраняются как основные свойства и признаки самого ромба, так и признаки и свойства выпуклости. То есть, мы можем наблюдать, что диагонали делят углы пополам и пересекаются под прямым углом.

Сегодняшней задачей было рассмотреть и понять, что такое выпуклые четырехугольники, какие они бывают и их основные признаки и свойства. Внимание! Стоит напомнить еще раз, что сумма углов выпуклого четырехугольника равна 360 градусам. Периметр фигур, например, равен сумме длин всех образующих фигуру отрезков. Формулы расчета периметра и площади четырехугольников будут рассмотрены в следующих статьях.

Видео:ОГЭ Задание 24 Площадь выпуклого четырехугольника с перпендикулярными диагоналямиСкачать

ОГЭ Задание 24 Площадь выпуклого четырехугольника с перпендикулярными диагоналями

Четырехугольники

теория по математике 📈 планиметрия

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.

Свойства диагоналей в выпуклом четырехугольникеОпределение

Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.Свойства диагоналей в выпуклом четырехугольнике

Видео:№478. В выпуклом четырехугольнике диагонали взаимно перпендикулярны. Докажите, что площадьСкачать

№478. В выпуклом четырехугольнике диагонали взаимно перпендикулярны. Докажите, что площадь

Виды и свойства выпуклых четырехугольников

Сумма углов выпуклого четырехугольника равна 360 градусов.

Прямоугольник

Прямоугольник – это четырехугольник, у которого все углы прямые.

Свойства диагоналей в выпуклом четырехугольникеНа рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь Свойства диагоналей в выпуклом четырехугольнике

  1. Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
  2. Диагонали прямоугольника равны (АС=ВD).
  3. Диагонали пересекаются и точкой пересечения делятся пополам.
  4. Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
  5. Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:

S=ab, где a и b соседние стороны прямоугольника.

Квадрат

Квадрат – это прямоугольник, у которого все стороны равны.

Свойства диагоналей в выпуклом четырехугольникеСвойства квадрата

  1. Диагонали квадрата равны (BD=AC).
  2. Диагонали квадрата пересекаются под углом 90 градусов.
  3. Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
  4. Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
  5. Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.

Свойства диагоналей в выпуклом четырехугольнике

Параллелограмм

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.

Свойства диагоналей в выпуклом четырехугольнике

Ромб – это параллелограмм, у которого все стороны равны.

Свойства диагоналей в выпуклом четырехугольнике

Трапеция

Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.

Свойства диагоналей в выпуклом четырехугольнике

Виды трапеций

Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.

Свойства диагоналей в выпуклом четырехугольнике

углы А и С равны по 90 градусов

Средняя линия трапеции

Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.

Свойства диагоналей в выпуклом четырехугольнике

Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.

Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.

По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17

Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.

Свойства диагоналей в выпуклом четырехугольнике

Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).

Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .

Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.

Свойства диагоналей в выпуклом четырехугольнике

Для нахождения площади трапеции в справочном материале есть формула

S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63

pазбирался: Даниил Романович | обсудить разбор | оценить

Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.

Свойства диагоналей в выпуклом четырехугольнике

Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.

Свойства диагоналей в выпуклом четырехугольнике

Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .

Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:

с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88

pазбирался: Даниил Романович | обсудить разбор | оценить

Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8

Для выполнения данного задания надо подставить все известные данные в формулу:

12,8= d 1 × 16 × 2 5 . . 2 . .

В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .

Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2

Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4

pазбирался: Даниил Романович | обсудить разбор | оценить

Свойства диагоналей в выпуклом четырехугольнике

На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.

При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.

Задание №1

Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.

Объектыяблонитеплицасарайжилой дом
Цифры

Решение

Для решения 1 задачи работаем с текстом и планом одновременно:

при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.

Итак, получили следующее:

1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.

Заполняем нашу таблицу:

Объектыяблонитеплицасарайжилой дом
Цифры3517

Записываем ответ: 3517

Задание №2

Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?

Решение

Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).

Свойства диагоналей в выпуклом четырехугольнике

Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».

Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.

Задание №3

Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.

Решение

Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.

Свойства диагоналей в выпуклом четырехугольнике

Задание №4

Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.

Решение

Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).

Свойства диагоналей в выпуклом четырехугольнике

Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м

Задание №5

Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.

Номер магазинаРасход краскиМасса краски в одной банкеСтоимость одной банки краскиСтоимость доставки заказа
10,25 кг/кв.м6 кг3000 руб.500 руб.
20,4 кг/кв.м5 кг1900 руб.800 руб.

Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?

Решение

Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:

1 магазин: 232х0,25=58 кг

2 магазин: 232х0,4=92,8 кг

Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:

1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)

2 магазин: 92,8:5=18,56; значит надо 19 банок.

Вычислим стоимость краски в каждом магазине плюс доставка:

1 магазин: 10х3000+500=30500 руб.

2 магазин: 19х1900+800=36900 руб.

Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Четырехугольник — виды и свойства с примерами решения

Содержание:

Четырёхугольник — это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки — сторонами четырёхугольника.

Свойства диагоналей в выпуклом четырехугольнике

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне — противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин — противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области — внутреннюю и внешнюю.

Свойства диагоналей в выпуклом четырехугольнике

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Свойства диагоналей в выпуклом четырехугольнике

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Свойства диагоналей в выпуклом четырехугольнике

Видео:Свойства диагоналей параллелограмма | Геометрия 8-9 классыСкачать

Свойства диагоналей параллелограмма | Геометрия 8-9 классы

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов Свойства диагоналей в выпуклом четырехугольникеуглы Свойства диагоналей в выпуклом четырехугольникеявляются внешними.

Свойства диагоналей в выпуклом четырехугольнике

Каждый внутренний угол выпуклого четырёхугольника меньше Свойства диагоналей в выпуклом четырехугольникеГрадусная мера внутреннего угла невыпуклого четырёхугольника может быть больше Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна Свойства диагоналей в выпуклом четырехугольникеСвойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Свойства диагоналей в выпуклом четырехугольникеДоказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны. Свойства диагоналей в выпуклом четырехугольнике

Теорема 1. Противоположные стороны параллелограмма конгруэнтны. Свойства диагоналей в выпуклом четырехугольнике

Теорема 2. Противоположные углы параллелограмма конгруэнтны. Свойства диагоналей в выпуклом четырехугольнике

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна Свойства диагоналей в выпуклом четырехугольникеСвойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам. Свойства диагоналей в выпуклом четырехугольнике

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника. Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны. Свойства диагоналей в выпуклом четырехугольнике

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Свойства диагоналей в выпуклом четырехугольнике

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом. Свойства диагоналей в выпуклом четырехугольнике

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если Свойства диагоналей в выпуклом четырехугольникето параллелограмм Свойства диагоналей в выпуклом четырехугольникеявляется ромбом.

Свойства диагоналей в выпуклом четырехугольнике

Доказательство теоремы 1.

Дано: Свойства диагоналей в выпуклом четырехугольникеромб.

Докажите, что Свойства диагоналей в выпуклом четырехугольнике

Доказательство (словестное): По определению ромба Свойства диагоналей в выпуклом четырехугольникеПри этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что Свойства диагоналей в выпуклом четырехугольникеравнобедренный. Медиана Свойства диагоналей в выпуклом четырехугольнике(так как Свойства диагоналей в выпуклом четырехугольнике), является также и биссектрисой и высотой. Т.е. Свойства диагоналей в выпуклом четырехугольникеТак как Свойства диагоналей в выпуклом четырехугольникеявляется прямым углом, то Свойства диагоналей в выпуклом четырехугольнике. Аналогичным образом можно доказать, что Свойства диагоналей в выпуклом четырехугольнике

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Свойства диагоналей в выпуклом четырехугольнике

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Свойства диагоналей в выпуклом четырехугольнике

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны. Свойства диагоналей в выпуклом четырехугольнике

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны. Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

План доказательства теоремы 2

Дано: Свойства диагоналей в выпуклом четырехугольникеравнобедренная трапеция. Свойства диагоналей в выпуклом четырехугольнике

Докажите: Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если Свойства диагоналей в выпуклом четырехугольникетогда Свойства диагоналей в выпуклом четырехугольникеЗапишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку Свойства диагоналей в выпуклом четырехугольникепроведем параллельную прямую к прямой Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике Свойства диагоналей в выпуклом четырехугольникечерез точку Свойства диагоналей в выпуклом четырехугольнике— середину стороны Свойства диагоналей в выпуклом четырехугольникепроведите прямую параллельную Свойства диагоналей в выпуклом четырехугольникеКакая фигура получилась? Является ли Свойства диагоналей в выпуклом четырехугольникетрапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Свойства диагоналей в выпуклом четырехугольникеМожно ли утверждать, что Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

Доказательство. Пусть дан треугольник Свойства диагоналей в выпуклом четырехугольникеи его средняя линия Свойства диагоналей в выпуклом четырехугольникеПроведём через точку Свойства диагоналей в выпуклом четырехугольникепрямую параллельную стороне Свойства диагоналей в выпуклом четырехугольникеПо теореме Фалеса, она проходит через середину стороны Свойства диагоналей в выпуклом четырехугольникет.е. совпадает со средней линией Свойства диагоналей в выпуклом четырехугольникеТ.е. средняя линия Свойства диагоналей в выпуклом четырехугольникепараллельна стороне Свойства диагоналей в выпуклом четырехугольникеТеперь проведём среднюю линию Свойства диагоналей в выпуклом четырехугольникеТ.к. Свойства диагоналей в выпуклом четырехугольникето четырёхугольник Свойства диагоналей в выпуклом четырехугольникеявляется параллелограммом. По свойству параллелограмма Свойства диагоналей в выпуклом четырехугольникеПо теореме Фалеса Свойства диагоналей в выпуклом четырехугольникеТогда Свойства диагоналей в выпуклом четырехугольникеТеорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Свойства диагоналей в выпуклом четырехугольнике

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Свойства диагоналей в выпуклом четырехугольнике

Доказательство: Через точку Свойства диагоналей в выпуклом четырехугольникеи точку Свойства диагоналей в выпуклом четырехугольникесередину Свойства диагоналей в выпуклом четырехугольникепроведём прямую и обозначим точку пересечения со стороной Свойства диагоналей в выпуклом четырехугольникечерез Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке Свойства диагоналей в выпуклом четырехугольникерадиусом 3 единицы. Вычислите значение выражения Свойства диагоналей в выпуклом четырехугольникеЕсть ли связь между значением данного выражения и координатой точки Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

Координаты середины отрезка

1) Пусть на числовой оси заданы точки Свойства диагоналей в выпуклом четырехугольникеи Свойства диагоналей в выпуклом четырехугольникеи точка Свойства диагоналей в выпуклом четырехугольникекоторая является серединой отрезка Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольникето Свойства диагоналей в выпуклом четырехугольникеа отсюда следует, что Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

2) По теореме Фалеса, если точка Свойства диагоналей в выпуклом четырехугольникеявляется серединой отрезка Свойства диагоналей в выпуклом четырехугольникето на оси абсцисс точка Свойства диагоналей в выпуклом четырехугольникеявляется соответственно координатой середины отрезка концы которого находятся в точках Свойства диагоналей в выпуклом четырехугольникеи Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

3) Координаты середины отрезка Свойства диагоналей в выпуклом четырехугольникес концами Свойства диагоналей в выпуклом четырехугольникеи Свойства диагоналей в выпуклом четырехугольникеточки Свойства диагоналей в выпуклом четырехугольникенаходятся так:

Свойства диагоналей в выпуклом четырехугольнике

Убедитесь, что данная формула верна в случае, если отрезок Свойства диагоналей в выпуклом четырехугольникепараллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки Свойства диагоналей в выпуклом четырехугольникекак показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Свойства диагоналей в выпуклом четырехугольнике

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Свойства диагоналей в выпуклом четырехугольнике

Шаг 4. На сторонах другого квадрата отметьте отрезки Свойства диагоналей в выпуклом четырехугольникекак показано на рисунке и отрежьте четыре прямоугольных треугольника.

Свойства диагоналей в выпуклом четырехугольнике

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Свойства диагоналей в выпуклом четырехугольнике

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Свойства диагоналей в выпуклом четырехугольнике

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах: Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если Свойства диагоналей в выпуклом четырехугольникето, Свойства диагоналей в выпуклом четырехугольнике— прямоугольный.

Свойства диагоналей в выпуклом четырехугольнике

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа Свойства диагоналей в выпуклом четырехугольникеявляются Пифагоровыми тройками, то и числа Свойства диагоналей в выпуклом четырехугольникетакже являются Пифагоровыми тройками.

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

Свойства диагоналей в выпуклом четырехугольнике(рис. 1).

Точки А, В, С, D — вершины четырёхугольника, отрезки АВ, ВС, CD, DA — его стороны. Углы DAB, ABC, BCD, CDA — это углы четырёхугольника. Их также обозначают одной буквой — Свойства диагоналей в выпуклом четырехугольникеСвойства диагоналей в выпуклом четырехугольнике

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой. Свойства диагоналей в выпуклом четырехугольнике

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA — неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ — соседние, а вершины А и С, Свойства диагоналей в выпуклом четырехугольнике, стороны AD и ВС — противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD — диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б — невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Свойства диагоналей в выпуклом четырехугольнике

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: Свойства диагоналей в выпуклом четырехугольнике=40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В Свойства диагоналей в выпуклом четырехугольнике+ CD (по неравенству треугольника). Тогда Свойства диагоналей в выпуклом четырехугольнике. Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) Свойства диагоналей в выпуклом четырехугольнике. Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Свойства диагоналей в выпуклом четырехугольнике

Решение:

Свойства диагоналей в выпуклом четырехугольнике(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично Свойства диагоналей в выпуклом четырехугольнике(АВ CD, ВС-секущая), Свойства диагоналей в выпуклом четырехугольнике(ВС || AD, CD — секущая), Свойства диагоналей в выпуклом четырехугольнике(АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Свойства диагоналей в выпуклом четырехугольнике

Доказательство. Свойства диагоналей в выпуклом четырехугольникепо стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, Свойства диагоналей в выпуклом четырехугольникекак внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.Свойства диагоналей в выпуклом четырехугольнике

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник — параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник — параллелограмм.

Свойства диагоналей в выпуклом четырехугольнике

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). Свойства диагоналей в выпуклом четырехугольникепо трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Свойства диагоналей в выпуклом четырехугольнике Свойства диагоналей в выпуклом четырехугольникеУглы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие — параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD — не параллелограмм. Свойства диагоналей в выпуклом четырехугольнике

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Свойства диагоналей в выпуклом четырехугольнике

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). Свойства диагоналей в выпуклом четырехугольникепо двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, Свойства диагоналей в выпуклом четырехугольникекак внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Свойства диагоналей в выпуклом четырехугольникеНо углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Свойства диагоналей в выпуклом четырехугольнике

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. Свойства диагоналей в выпуклом четырехугольникепо двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, Свойства диагоналей в выпуклом четырехугольникекак вертикальные. Из равенства треугольников следует: ВС= AD и Свойства диагоналей в выпуклом четырехугольникеНо углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник — параллелограмм.

Чтобы установить, что четырёхугольник — параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Свойства диагоналей в выпуклом четырехугольнике

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и —у треугольники, можно разделить на виды. Прямоугольник — один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике. Свойства диагоналей в выпуклом четырехугольнике

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник — частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Свойства диагоналей в выпуклом четырехугольнике

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Свойства диагоналей в выпуклом четырехугольникеМожно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что Свойства диагоналей в выпуклом четырехугольнике. Свойства диагоналей в выпуклом четырехугольникепо трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что Свойства диагоналей в выпуклом четырехугольнике. Поскольку в параллелограмме противоположные углы равны, то: Свойства диагоналей в выпуклом четырехугольнике. По свойству углов четырёхугольника, Свойства диагоналей в выпуклом четырехугольнике

Следовательно, Свойства диагоналей в выпуклом четырехугольнике: 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм — прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, — это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Свойства диагоналей в выпуклом четырехугольнике

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма — ромб.

Свойства диагоналей в выпуклом четырехугольнике

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Свойства диагоналей в выпуклом четырехугольнике

Дано: ABCD — ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать: Свойства диагоналей в выпуклом четырехугольнике

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому Свойства диагоналей в выпуклом четырехугольнике. Свойства диагоналей в выпуклом четырехугольнике

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Свойства диагоналей в выпуклом четырехугольнике

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором Свойства диагоналей в выпуклом четырехугольнике(рис. 96). Докажем, что ABCD— ромб. Свойства диагоналей в выпуклом четырехугольникепо двум сторонами и углу между ними.

Свойства диагоналей в выпуклом четырехугольнике

Так как ромб — это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, Свойства диагоналей в выпуклом четырехугольникепо условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм — ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Свойства диагоналей в выпуклом четырехугольнике

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник — это частные виды параллелограмма. Соотношение между видами параллелограммов показано на Свойства диагоналей в выпуклом четырехугольнике

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

Свойства диагоналей в выпуклом четырехугольнике

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Свойства диагоналей в выпуклом четырехугольнике

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Свойства диагоналей в выпуклом четырехугольнике

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки Свойства диагоналей в выпуклом четырехугольникеи Свойства диагоналей в выпуклом четырехугольникеПроведите с помощью чертёжного угольника и линейки через точки Свойства диагоналей в выпуклом четырехугольникепараллельные прямые, которые пересекут сторону ВС этого угла в точках Свойства диагоналей в выпуклом четырехугольникеПри помощи циркуля сравните длины отрезков Свойства диагоналей в выпуклом четырехугольникеСделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано: Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

Доказать: Свойства диагоналей в выпуклом четырехугольнике

Доказательство. Проведём через точки Свойства диагоналей в выпуклом четырехугольникепрямые Свойства диагоналей в выпуклом четырехугольникепараллельные ВС. Свойства диагоналей в выпуклом четырехугольникепо стороне и прилежащим к ней углам. У них Свойства диагоналей в выпуклом четырехугольникепо условию, Свойства диагоналей в выпуклом четырехугольникекак соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что Свойства диагоналей в выпуклом четырехугольникеи Свойства диагоналей в выпуклом четырехугольникекак противоположные стороны параллелограммов Свойства диагоналей в выпуклом четырехугольнике

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Свойства диагоналей в выпуклом четырехугольнике

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Свойства диагоналей в выпуклом четырехугольнике

Отложим на луче АС пять равных отрезков: АА,Свойства диагоналей в выпуклом четырехугольникеПроведём прямую Свойства диагоналей в выпуклом четырехугольнике. Через точки Свойства диагоналей в выпуклом четырехугольникепроведём прямые, параллельные прямой Свойства диагоналей в выпуклом четырехугольнике. По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN — средняя линия Свойства диагоналей в выпуклом четырехугольнике, так как точки М и N — середины сторон АВ и ВС.

Свойства диагоналей в выпуклом четырехугольнике

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: Свойства диагоналей в выпуклом четырехугольнике(рис. 122), AD = BD, СЕ= BE.

Свойства диагоналей в выпуклом четырехугольнике

Доказать: Свойства диагоналей в выпуклом четырехугольнике

Доказательство. 1) Пусть DE- средняя линия Свойства диагоналей в выпуклом четырехугольнике. Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: Свойства диагоналей в выпуклом четырехугольнике. По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно, Свойства диагоналей в выпуклом четырехугольнике

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Свойства диагоналей в выпуклом четырехугольнике

Поэтому Свойства диагоналей в выпуклом четырехугольнике. КР— средняя линия треугольника ADC. Поэтому КР || АС и Свойства диагоналей в выпуклом четырехугольнике

Получаем: MN || АС и КР || АС, отсюда MN || КРСвойства диагоналей в выпуклом четырехугольнике, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Свойства диагоналей в выпуклом четырехугольнике

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами — параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие — АВ и CD — непараллельны. Такой четырёхугольник — трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Свойства диагоналей в выпуклом четырехугольнике

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие — непараллельны.

Свойства диагоналей в выпуклом четырехугольнике

Параллельные стороны трапеции называются её основаниями, а непараллельные — боковыми сторонами. На рисунке 144 AD и ВС — основания трапеции, АВ и CD — боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP — равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) — прямоугольная, поскольку Свойства диагоналей в выпуклом четырехугольнике= 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF — средняя линия трапеции ABCD, так как точки Е и F — середины боковых сторон АВ и CD.

Свойства диагоналей в выпуклом четырехугольнике

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD — трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать: Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. Свойства диагоналей в выпуклом четырехугольникеno стороне и прилежащим к ней углам. У них CF = FD по условию, Свойства диагоналей в выпуклом четырехугольникекак вертикальные, Свойства диагоналей в выпуклом четырехугольникевнутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Свойства диагоналей в выпуклом четырехугольнике

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и Свойства диагоналей в выпуклом четырехугольникеравнобедренный. Поэтому Свойства диагоналей в выпуклом четырехугольникесоответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Свойства диагоналей в выпуклом четырехугольнике

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Свойства диагоналей в выпуклом четырехугольнике

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом. Свойства диагоналей в выпуклом четырехугольникеСвойства диагоналей в выпуклом четырехугольнике

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: Свойства диагоналей в выпуклом четырехугольнике— вписанный в окружность с центром О (рис. 188 — 190).

Доказать: Свойства диагоналей в выпуклом четырехугольнике

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом Свойства диагоналей в выпуклом четырехугольнике. По свойству внешнего угла треугольника, Свойства диагоналей в выпуклом четырехугольникеСвойства диагоналей в выпуклом четырехугольнике— равнобедренный (ОВ= OA = R). Поэтому Свойства диагоналей в выпуклом четырехугольникеизмеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:Свойства диагоналей в выпуклом четырехугольнике

Из доказанного в первом случае следует, что Свойства диагоналей в выпуклом четырехугольникеизмеряется половиной дуги AD, a Свойства диагоналей в выпуклом четырехугольнике— половиной дуги DC. Поэтому Свойства диагоналей в выпуклом четырехугольникеизмеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда: Свойства диагоналей в выпуклом четырехугольнике

Свойства диагоналей в выпуклом четырехугольнике

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, — прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°. Свойства диагоналей в выпуклом четырехугольнике

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). Свойства диагоналей в выпуклом четырехугольникекак вписанные, опирающиеся на дугу АС (следствие 1). Поэтому Свойства диагоналей в выпуклом четырехугольнике, так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно, Свойства диагоналей в выпуклом четырехугольнике

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, Свойства диагоналей в выпуклом четырехугольнике(рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около Свойства диагоналей в выпуклом четырехугольнике(рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо: Свойства диагоналей в выпуклом четырехугольнике

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность. Свойства диагоналей в выпуклом четырехугольнике

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность — описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Свойства диагоналей в выпуклом четырехугольнике

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Свойства диагоналей в выпуклом четырехугольнике

Доказать: Свойства диагоналей в выпуклом четырехугольнике

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует: Свойства диагоналей в выпуклом четырехугольнике

Тогда Свойства диагоналей в выпуклом четырехугольнике

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда Свойства диагоналей в выпуклом четырехугольнике

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник — вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225). Свойства диагоналей в выпуклом четырехугольнике

Докажем, что Свойства диагоналей в выпуклом четырехугольнике. В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, Свойства диагоналей в выпуклом четырехугольнике. По свойству равнобокой трапеции, Свойства диагоналей в выпуклом четырехугольнике

Тогда Свойства диагоналей в выпуклом четырехугольникеи, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Свойства диагоналей в выпуклом четырехугольнике

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Свойства диагоналей в выпуклом четырехугольнике

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения Свойства диагоналей в выпуклом четырехугольникецентры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника Свойства диагоналей в выпуклом четырехугольникевписанного в окружность. Действительно,

Свойства диагоналей в выпуклом четырехугольнике

Следовательно, четырёхугольник Свойства диагоналей в выпуклом четырехугольнике— вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Свойства диагоналей в выпуклом четырехугольнике

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD — вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Свойства диагоналей в выпуклом четырехугольнике

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.

Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

🎬 Видео

8 класс, 2 урок, Выпуклый многоугольникСкачать

8 класс, 2 урок, Выпуклый многоугольник

Многоугольники. Математика 8 класс | TutorOnlineСкачать

Многоугольники. Математика 8 класс | TutorOnline

Сумма внутренних углов многоугольника. Выпуклые и невыпуклые многоугольники. 8 класс.Скачать

Сумма внутренних углов многоугольника. Выпуклые и невыпуклые многоугольники. 8 класс.

6 Сумма длин двух противоположных сторон и сумма диагоналей выпуклого четырёхугольникаСкачать

6 Сумма длин двух противоположных сторон и сумма диагоналей выпуклого четырёхугольника

Если диагонали выпуклого четырёхугольника равны ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если диагонали выпуклого четырёхугольника равны ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Диагонали трапеции и точка их пересеченияСкачать

Диагонали трапеции и точка их пересечения

24 Количество диагоналей выпуклого n-угольникаСкачать

24 Количество диагоналей выпуклого n-угольника

78 Углы и диагонали четырёхугольника (146)Скачать

78 Углы и диагонали четырёхугольника (146)

ЧетырехугольникиСкачать

Четырехугольники

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

8 класс, 4 урок, ПараллелограммСкачать

8 класс, 4 урок, Параллелограмм

Что такое выпуклый четырёхугольник? | Математика 8 класс | Геометрия 8 класс | МегаШколаСкачать

Что такое выпуклый четырёхугольник? | Математика 8 класс  |  Геометрия 8 класс | МегаШкола

Сумма квадратов диагоналей параллелограммаСкачать

Сумма квадратов диагоналей параллелограмма

Диагонали четырехугольника равны 4 и 5.Скачать

Диагонали четырехугольника равны 4 и 5.
Поделиться или сохранить к себе: