Определите вид четырехугольника ab1a1b

Параллельные прямые, перпендикулярные к плоскости

Перпендикулярные прямые в пространстве.

a ║ α, b ┴ α. Какими не могут быть прямые a и b?

Выберите один из 3 вариантов ответа:

1) перпендикулярными 2) параллельными 3) скрещивающимися

Пользуясь данными рисунка, определите вид четырёхугольника ABB1A1.

Определите вид четырехугольника ab1a1bВ ответе укажите название фигуры без каких-либо знаков препинания и пробелов. Например: круг.

Пользуясь данными рисунка, найдите периметр четырёхугольника ABB1A1.

Определите вид четырехугольника ab1a1bВ ответе укажите только значение периметра в сантиметрах без единиц измерения. Например: 18,7.

DABC — тетраэдр. AD ┴ AC, AD ┴ AB, AC ┴ BC. Какой плоскости перпендикулярно ребро BC?

Определите вид четырехугольника ab1a1b

Выберите один из 4 вариантов ответа:

Выберите верные утверждения.

Выберите несколько из 4 вариантов ответа:

1) Если две прямые перпендикулярны к третьей прямой, то они пересекаются.

2) Если две прямые перпендикулярны к плоскости, то они параллельны.

3) Если две прямые перпендикулярны к третьей прямой, то они параллельны.

4) Если одна из двух прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Пользуясь данными рисунка, укажите пару перпендикулярных прямых.

Определите вид четырехугольника ab1a1b

Выберите один из 4 вариантов ответа:

1) Определите вид четырехугольника ab1a1b

2) Определите вид четырехугольника ab1a1b

3) Определите вид четырехугольника ab1a1b

4) Определите вид четырехугольника ab1a1b

Известно, что прямая m перпендикулярна к прямым a и b, лежащим в плоскости α, но m не перпендикулярна к плоскости α. Каково взаимное расположение прямых a и b?

Выберите один из 3 вариантов ответа:

1) скрещиваются 2) параллельны 3) пересекаются

Пользуясь указанными ниже записями, сделайте вывод о взаимном расположении прямых b и c.

Определите вид четырехугольника ab1a1b

Выберите один из 4 вариантов ответа:

1) Определите вид четырехугольника ab1a1b2) Определите вид четырехугольника ab1a1b3) Определите вид четырехугольника ab1a1b4) Определите вид четырехугольника ab1a1b

Пользуясь данными рисунка, установите соответствие между парами прямых и их взаимным расположением.

Определите вид четырехугольника ab1a1b

Укажите соответствие для всех 2 вариантов ответа:

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Четырехугольники

теория по математике 📈 планиметрия

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.

Определите вид четырехугольника ab1a1bОпределение

Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.Определите вид четырехугольника ab1a1b

Видео:№751. Определите вид четырехугольника ABCD, если:Скачать

№751. Определите вид четырехугольника ABCD, если:

Виды и свойства выпуклых четырехугольников

Сумма углов выпуклого четырехугольника равна 360 градусов.

Прямоугольник

Прямоугольник – это четырехугольник, у которого все углы прямые.

Определите вид четырехугольника ab1a1bНа рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь Определите вид четырехугольника ab1a1b

  1. Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
  2. Диагонали прямоугольника равны (АС=ВD).
  3. Диагонали пересекаются и точкой пересечения делятся пополам.
  4. Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
  5. Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:

S=ab, где a и b соседние стороны прямоугольника.

Квадрат

Квадрат – это прямоугольник, у которого все стороны равны.

Определите вид четырехугольника ab1a1bСвойства квадрата

  1. Диагонали квадрата равны (BD=AC).
  2. Диагонали квадрата пересекаются под углом 90 градусов.
  3. Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
  4. Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
  5. Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.

Определите вид четырехугольника ab1a1b

Параллелограмм

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.

Определите вид четырехугольника ab1a1b

Ромб – это параллелограмм, у которого все стороны равны.

Определите вид четырехугольника ab1a1b

Трапеция

Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.

Определите вид четырехугольника ab1a1b

Виды трапеций

Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.

Определите вид четырехугольника ab1a1b

углы А и С равны по 90 градусов

Средняя линия трапеции

Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.

Определите вид четырехугольника ab1a1b

Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.

Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.

По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17

Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.

Определите вид четырехугольника ab1a1b

Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).

Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .

Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.

Определите вид четырехугольника ab1a1b

Для нахождения площади трапеции в справочном материале есть формула

S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63

pазбирался: Даниил Романович | обсудить разбор | оценить

Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.

Определите вид четырехугольника ab1a1b

Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.

Определите вид четырехугольника ab1a1b

Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .

Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:

с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88

pазбирался: Даниил Романович | обсудить разбор | оценить

Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8

Для выполнения данного задания надо подставить все известные данные в формулу:

12,8= d 1 × 16 × 2 5 . . 2 . .

В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .

Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2

Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4

pазбирался: Даниил Романович | обсудить разбор | оценить

Определите вид четырехугольника ab1a1b

На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.

При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.

Задание №1

Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.

Объектыяблонитеплицасарайжилой дом
Цифры

Решение

Для решения 1 задачи работаем с текстом и планом одновременно:

при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.

Итак, получили следующее:

1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.

Заполняем нашу таблицу:

Объектыяблонитеплицасарайжилой дом
Цифры3517

Записываем ответ: 3517

Задание №2

Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?

Решение

Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).

Определите вид четырехугольника ab1a1b

Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».

Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.

Задание №3

Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.

Решение

Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.

Определите вид четырехугольника ab1a1b

Задание №4

Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.

Решение

Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).

Определите вид четырехугольника ab1a1b

Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м

Задание №5

Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.

Номер магазинаРасход краскиМасса краски в одной банкеСтоимость одной банки краскиСтоимость доставки заказа
10,25 кг/кв.м6 кг3000 руб.500 руб.
20,4 кг/кв.м5 кг1900 руб.800 руб.

Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?

Решение

Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:

1 магазин: 232х0,25=58 кг

2 магазин: 232х0,4=92,8 кг

Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:

1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)

2 магазин: 92,8:5=18,56; значит надо 19 банок.

Вычислим стоимость краски в каждом магазине плюс доставка:

1 магазин: 10х3000+500=30500 руб.

2 магазин: 19х1900+800=36900 руб.

Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Геометрия 10 Контрольная 2 Мерзляк

Контрольная работа # 2 по геометрии в 10 классе (базовый уровень) «Параллельность в пространстве» для УМК Мерзляк, Номировский, Поляков, под ред. В. Е. Подольского в 4-х вариантов. Геометрия 10 Контрольная 2 Мерзляк. Ответов нет.

Геометрия 10 класс (УМК Мерзляк)
Контрольная работа № 2

Параллельность в пространстве

Вариант 1

  1. Точки M, N, P и Q — середины отрезков BC, BD, AD и AC соответственно, AB = 14 см, CD = 18 см (рис. 9). Определите вид четырёхугольника MNPQ и вычислите его периметр.
  2. Плоскость а пересекает стороны AB и BC треугольника ABC в точках M и K соответственно и параллельна стороне AC, MK = 4 см, MB : MА = 2 : 3. Найдите сторону AC треугольника.
  3. Треугольник ABC является изображением правильного треугольника A1B1C1 (рис. 10). Постройте изображение высоты треугольника, опущенной на сторону AC1.
  4. Плоскости а и b параллельны. Из точки M, не принадлежащей этим плоскостям и не находящейся между ними, проведены два луча. Один из них пересекает плоскости a и b в точках А1 и B1, а другой — в точках А2 и B2 соответственно. Найдите отрезок В1В2, если он на 2 см больше отрезка А1А2, МВ1 = 7 см, А1B1 = 4 см.
  5. Точки A, B, C, не лежащие на одной прямой, являются параллельными проекциями трёх последовательных вершин правильного шестиугольника. Постройте изображение этого шестиугольника.Определите вид четырехугольника ab1a1b

Вариант 2

  1. Точки F, M, N и C — середины отрезков BS, DB, AD и AS соответственно, SD = 30 см, AB = 36 см (рис. 11). Определите вид четырёхугольника FMNC и вычислите его периметр.
  2. Плоскость b пересекает стороны AB и AC треугольника ABC в точках N и D соответственно и параллельна стороне BC, AD = 6 см, DN : CB = 3 : 4. Найдите сторону AC треугольника.
  3. Треугольник MNK является изображением правильного треугольника M1N1K1 (рис. 12). Постройте изображение биссектрисы треугольника, проведённой из вершины M1.
  4. Плоскости а и b параллельны. Через точку M, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости а и b в точках А1 и B1, а другая — в точках А2 и B2 соответственно. Найдите отрезок А1А2, если он на 1 см меньше отрезка B1B2, MA2 = 4 см, А2B2 = 10 см.
  5. Точки A, B и O, не лежащие на одной прямой, являются соответственно параллельными проекциями двух вершин квадрата и его центра. Постройте изображение квадрата.Определите вид четырехугольника ab1a1b

Вариант 3

  1. Точки N, M, C и K — середины отрезков BD, DF, FA и AB соответственно, BF = 24 см, AD = 18 см (рис. 13). Определите вид четырёхугольника NMCK и вычислите его периметр.
  2. Плоскость а пересекает стороны MF и MK треугольника MFK в точках A и B соответственно и параллельна стороне FK, AB = 12 см, AM : AF = 3 : 5. Найдите сторону FK треугольника.
  3. Треугольник ABC является изображением правильного треугольника А1B1C1 (рис. 14). Постройте изображение центра вписанной окружности треугольника А1B1C1.
  4. Плоскости а и b параллельны. Из точки O, не принадлежащей этим плоскостям и не находящейся между ними, проведены два луча. Один из них пересекает плоскости а и b в точках C1 и D1, а другой — в точках C2 и D2 соответственно. Найдите отрезок C1C2, если он на 5 см меньше отрезка D1D2, OC1 = 4 см, C1D1 = 10 см.
  5. Точки A, B и O, не лежащие на одной прямой, являются соответственно параллельными проекциями двух вершин правильного треугольника и его центра. Постройте изображение этого треугольника.Определите вид четырехугольника ab1a1b

Вариант 4

  1. Точки A, B, K и T — середины отрезков MF, PF, PN и MN соответственно, MP = 10 см, FN = 16 см (рис. 9). Определите вид четырёхугольника ABKT и вычислите его периметр.
  2. Плоскость b пересекает стороны CF и CD треугольника CDF в точках M и N соответственно и параллельна стороне FD, MN = 6 см, FD = 21 см, MC = 10 см. Найдите сторону FC треугольника.
  3. Треугольник ABC является изображением правильного треугольника А1B1C1 (рис. 16). Постройте изображение центра описанной окружности треугольника А1B1C1.
  4. Плоскости а и b параллельны. Через точку D, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости а и b в точках M1 и N1, а другая — в точках M2 и N2 соответственно. Найдите отрезок M1M2, если он на 8 см больше отрезка N1N2, N1M1 = 30 см, DN1 = 5 см.
  5. Точки A, B и M, не лежащие на одной прямой, являются соответственно параллельными проекциями двух соседних вершин параллелограмма и середины его противолежащей стороны. Постройте изображение этого параллелограмма.Определите вид четырехугольника ab1a1b

Вы смотрели: Контрольная работа по геометрии в 10 классе (базовый уровень) «Параллельность в пространстве» для УМК Мерзляк, Номировский, Поляков, под ред. В. Е. Подольского в 4-х вариантов. Геометрия 10 Контрольная 2 Мерзляк. Ответов нет.

(с) Цитаты из пособия «Математика : алгебра и начала математического анализа, геометрия. Геометрия. Базовый уровень : 10 класс : методическое пособие / Е. В. Буцко, А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. — М.: Вентана-Граф» использованы в учебных целях.

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

🔥 Видео

№369. Найдите углы A, B и C выпуклого четырехугольника ABCD, еслиСкачать

№369. Найдите углы A, B и C выпуклого четырехугольника ABCD, если

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

№ 751 - Геометрия 7-9 класс АтанасянСкачать

№ 751 - Геометрия 7-9 класс Атанасян

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

Что такое выпуклый четырёхугольник? | Математика 8 класс | Геометрия 8 класс | МегаШколаСкачать

Что такое выпуклый четырёхугольник? | Математика 8 класс  |  Геометрия 8 класс | МегаШкола

ЗАДАНИЕ 1| ЕГЭ ПРОФИЛЬ| Угол А четырёхугольника ABCD, вписанного в окружность, равен 25.Найдите уголСкачать

ЗАДАНИЕ 1| ЕГЭ ПРОФИЛЬ| Угол А четырёхугольника ABCD, вписанного в окружность, равен 25.Найдите угол

Геометрия 8. Урок 12 - Площадь четырехугольников. Формулы.Скачать

Геометрия 8. Урок 12 - Площадь четырехугольников. Формулы.

Задание № 751 — Геометрия 8 класс (Атанасян)Скачать

Задание № 751 — Геометрия 8 класс (Атанасян)

Геометрия Можно ли описать окружность около четырехугольника ABCD если AB = 4 см AD = 3 см BD = 6смСкачать

Геометрия Можно ли описать окружность около четырехугольника ABCD если AB = 4 см AD = 3 см BD = 6см

Вписанные четырехугольники. 9 класс.Скачать

Вписанные четырехугольники. 9 класс.

Четырехугольники. Вебинар | МатематикаСкачать

Четырехугольники. Вебинар | Математика

Геометрия Найдите диагональ AC четырехугольника ABCD если около него можно описать окружность и ABСкачать

Геометрия Найдите диагональ AC четырехугольника ABCD если около него можно описать окружность и AB

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Геометрия Сторона AD четырехугольника ABCD является диаметром окружности, описанной около негоСкачать

Геометрия Сторона AD четырехугольника ABCD является диаметром окружности, описанной около него

78 Углы и диагонали четырёхугольника (146)Скачать

78 Углы и диагонали четырёхугольника (146)

№371. Докажите, что выпуклый четырехугольник ABCD является параллелограммом,Скачать

№371. Докажите, что выпуклый четырехугольник ABCD является параллелограммом,

Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.
Поделиться или сохранить к себе: