Второй признак равенства треугольников
Отсюда вытекает следующее теоремма:
Третий признак равенства треугольников
Видео:Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)Скачать
Задачи
Задача 1
Дано:
ABC — равнобедренный треугольник.
АМ и BN биссектрисы угла.
Доказать: AM = BN.
Доказательство:
Треугольники AMB и BNA — равны (по второму признаку — угол-сторона-угол) потому что:
1. ∠CAB = ∠CBA
2. AB – в обеих треугольниках.
3. ∠MAB = ∠NBA = 1 /2 ∠CAB.
Отрезки AM и BN являются соответствующими в этих равных треугольниках, и, следовательно, AM = BN.
Задача 2
Дано:
ABC — треугольник,
CM — медиана,
AA1 ⊥ CM и BB1 ⊥ CM.
Доказать: АА1 = ВВ1.
Доказательство:
1. ∠BB1M = ∠AA1M = 90°,
2. ∠AMA1 = ∠BMB1 как вертикальные,
3. AM = BM.
Следовательно △AA1M = △BB1M (по второму признаку).
Тогда AA1 = BB1 как соответствующие стороны в этих треугольниках.
Задача 3
Докажите, что перпендикуляры, проведённые из любой точки биссектрисы угла по отношению к его сторонам, вырезают на них равные отрезки.
Доказательство:
Давайте предположим, что ∠AOB точка M — неопределённая точка на биссектрисе OL.(fig.40)
Возьмём, что MP ⊥ OA и MQ ⊥ OB. Для того, чтобы доказать, что OP = OQ, достаточно доказать что △OPM = △OQM.
Но △OPM = △OQM(по второму признаку), потому что
1. OM — общая сторона,
2. ∠QOM = ∠POM (OL есть биссектриса),
3. ∠OQM = ∠OPM = 90°, откуда OP = OQ
Задача 4
Докажите, что если в треугольнике высота и биссектриса, проведенные из одной вершины, равны, то треугольник равнобедренный.
Доказательство:
Обозначим, что △ABC высота и биссектриса, проведённые из вершины C, совпадают (рис. 41).
Для того, чтобы доказать, что AC = BC, т.е. △ABC является равнобедренным, достаточно доказать, что △APC = △ BPC.
Но △APC = △BPC (по второму признаку) потому что
1. ∠ACP = ∠BCP (CP — биссектриса)
2. ∠ACP = ∠CPB = 90° (CP — высота)
3. CP — общая сторона
Следователвно AC = BC ⇒ ABC — равнобедренный
Задача 5
Давайте посмотрим на треугольники △ABC и △A1B1C1
1. AB = A1B1
2. BC = B1C1
3. ABC = A1B1C1
Тогда, △ABC = △A1B1C1 — равны по первому признаку.
Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
Задачи на первый признак равенства треугольников
Рассмотрим конкретные задачи на первый признак равенства треугольников.
1) Дано:
Этот ход сразу позволяет увидеть, что данные треугольники имеют общую сторону AC.
Теперь запишем равные пары элементов.
1) AB=AD (по условию)
2) ∠BAC=∠DAC (по условию)
3) AC — общая сторона.
Следовательно, ∆ABC=∆ADC (по двум сторонам и углу между ними, то есть по первому признаку равенства треугольников).
Что и требовалось доказать.
Дано:
Выделим треугольники, равенство которых доказываем, разными цветами.
Определяем те элементы, о равенстве которых известно по условию задачи:
1) AO=BO (по условию)
2) CO=DO (по условию).
Для равенства треугольников осталось найти третью пару равных элементов. Это — углы AOC и BOD.
Все три пункта первого признака равенства треугольников есть. Следовательно, ∆AOC=∆BOD (по двум сторонам и углу между ними).
Что и требовалось доказать.
Дано:
Выделяем треугольники ABK и ACF разными цветами.
Цветовая визуализация позволяет увидеть, что для данных треугольников угол A — общий .
Далее определяем, равенство каких элементов дано в условии. Записываем доказательство.
1) AB=AC (по условию)
2) AF=AK (по условию)
Все три пункта первого признака равенства треугольников выполнены.
Следовательно, ∆ABK=∆ACF (по двум сторонам и углу между ними).
Что и следовало доказать.
В следующий раз рассмотрим задачи на второй признак равенства треугольников.
Видео:Признаки равенства треугольников. Практическая часть. 7 класс.Скачать
Геометрия. 7 класс
Конспект урока
Решение задач на признаки равенства треугольников
Перечень рассматриваемых вопросов:
- Решение задач на вычисление элементов и доказательство равенства треугольников.
- Формулировка и применение при решении задач признаков равенства треугольников.
- Исследование и обоснование выбора одного из признаков при решении конкретных задач.
Теорема – это утверждение, справедливость которого устанавливается путём рассуждений в данной системе аксиом.
Стороны треугольника – отрезки, соединяющие вершины треугольника.
Равные треугольники – треугольники, которые можно совместить наложением.
1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
- Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
- Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
- Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
- Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
- Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7 – 9 классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.
Теоретический материал для самостоятельного изучения
В предыдущих уроках были рассмотрены различные способы определения и доказательства равенства треугольников, такие как: способ наложения, признаки равенства треугольников.
Сегодня мы будем решать задачи на вычисления и доказательство равенства треугольников.
Для успешного понимания материалов урока вспомним, какие треугольники называются равными.
‑ Два треугольника называются равными, если их можно совместить наложением. При этом попарно совмещаются вершины, углы и стороны треугольников.
‑ Если два треугольника равны, то элементы (стороны и углы) одного треугольника соответственно равны элементам (сторонам и углам) другого треугольника.
Повторим теоремы о равенстве треугольников, так называемые признаки равенства треугольников.
1) Первый признак равенства треугольников.
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
2) Второй признак равенства треугольников.
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
3) Третий признак равенства треугольников.
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Решим задачи, используя признаки равенства треугольников.
Отрезки AB и CD – диаметры окружности с центром в точке O. Найдите периметр треугольника AOD, если отрезок CB = 13 см, а отрезок AB = 18 см.
окружность с центром O;
AB и CD – диаметры;
1) ∆AOD = ∆OBC (по первому признаку равенства треугольников).
2) Т. к. AO = OB = OC = OD = 18:2 = 9 см (как радиусы окружностей); ∠AOD = ∠COB (т. к. вертикальные углы) → CB = AD = 13 см.
3) P∆AOD = AO + OD + AD = 9 + 9 +13 = 31 см
В четырёхугольнике ABCD, AB = CD, AD = CB, BE – биссектриса ∠B, DF – биссектриса ∠D.
Докажите, что ∠ABE = ∠ADF, ∆ABE = ∆CDF.
BE – биссектриса ∠B ∆ABС,
DF– биссектриса ∠D ∆CDА
1) ∆ABC = ∆ACD (по третьему признаку равенства треугольников).
2) Т. к. AC – общая сторона, AB = CD, AD = CB (по условию) →∠B = ∠D.
3) По условию BE – биссектриса ∠B ∆ABС, DF– биссектриса ∠D ∆CDА →∠B = ∠CBE +∠ABE = ∠ADF + ∠CDF = ∠D.
При этом ∠CBE = ∠ABE, ∠ADF = ∠CDF→∠B = 2∠ABE = 2∠ADF = ∠D→∠ABE = ∠ADF.
Т. к. AB = CD (по условию), ∠ABE = ∠ADF (доказано), ∠EAB = ∠CDF (т. к. ∆ABC = ∆ACD по третьему признаку равенства треугольников). Что и требовалось доказать.
Материал для углубленного изучения темы.
1) Приложим треугольник ∆ ABC к ∆ А1В1С1, так чтобы вершина A совместилась с вершиной A1, вершина B с B1, вершины C и C1 лежали по разные стороны от прямой A1B1.
2) Соединим точки C и C1, так чтобы получился треугольник CC1B.
3) Так как BC = B1C1, → ∆CC1B – равнобедренный, по теореме о свойстве углов равнобедренного треугольника, →∠C = ∠С1.
4) ∆CC1A – также равнобедренный (по теореме о свойстве углов равнобедренного треугольника) → ∠ CС1A = ∠С1CA → ∠ACB = ∠AС1B
Разбор заданий тренировочного модуля.
№ 1. На рисунке изображены треугольники ABD и BCD. По какому признаку, используя данные рисунка, можно доказать их равенство?
По рисунку видно, что ∠ADB = ∠DBC(углы отмечены двойной линией), ∠ABD = ∠BDC (углы отмечены одной линией), сторона DB – общая, следовательно, ∆ABD = ∆BCD (по второму признаку равенства треугольников: если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны).
Ответ: используя данные рисунка, можно доказать равенство треугольников, используя второй признак равенства треугольников.
№ 2. На рисунке CD = AB, O – центр окружности. Точки A, B, C, D лежат на окружности. CD = 17 см, CO = 15 см. Найдите периметр ∆AOB.
1) Так как по условию O – центр окружности и так как точки A, B, C, D лежат на окружности, то отрезки OA = OB = OD = OC = 15 см (как радиусы окружности). CD = AB = 17 см (по условию). Периметр ∆AOB – это сумма всех его сторон.
Р∆AOB = OA + OB + AB = 15 +15 + 17 = 47 см
💥 Видео
Признаки равенства треугольников. 7 класс.Скачать
7 класс, 15 урок, Первый признак равенства треугольниковСкачать
Задачи на доказательство по геометрии. Первый признак равенства треугольников.Скачать
Первый признак равенства треугольников. 7 класс.Скачать
Задачи на доказательство равенства треугольников. Первый признак. Простые.Скачать
Задачи. Второй признак равенства треугольников. По рисункам. Доказать.Скачать
первый признак равенства треугольников. Задачи по готовым чертежам, рисункам. 7 классСкачать
Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)Скачать
Третий признак равенства треугольников (доказательство) - геометрия 7 классСкачать
Второй признак равенства треугольников. 7 класс.Скачать
7 класс, 19 урок, Второй признак равенства треугольниковСкачать
Геометрия 7 класс (Урок№14 - Второй и третий признаки равенства треугольников.)Скачать
7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
Геометрия. 7 класс. Теоремы. Т3. Первый признак равенства треугольников.Скачать
Первый признак равенства треугольников. Доказательство. Задачи по рисункам.Скачать
Третий признак равенства треугольников | Теорема + доказательствоСкачать
7 класс, 20 урок, Третий признак равенства треугольниковСкачать