Numpy вектор в столбец

Нескучный туториал по NumPy

Меня зовут Вячеслав, я хронический математик и уже несколько лет не использую циклы при работе с массивами…

Ровно с тех пор, как открыл для себя векторные операции в NumPy. Я хочу познакомить вас с функциями NumPy, которые чаще всего использую для обработки массивов данных и изображений. В конце статьи я покажу, как можно использовать инструментарий NumPy, чтобы выполнить свертку изображений без итераций (= очень быстро).

Не забываем про

Видео:#11. Произведение матриц и векторов, элементы линейной алгебры | NumPy урокиСкачать

#11. Произведение матриц и векторов, элементы линейной алгебры | NumPy уроки

Что такое NumPy?

Это библиотека с открытым исходным кодом, некогда отделившаяся от проекта SciPy. NumPy является наследником Numeric и NumArray. Основан NumPy на библиотеке LAPAC, которая написана на Fortran. Не-python альтернативой для NumPy является Matlab.

В силу того, что NumPy базируется на Fortran это быстрая библиотека. А в силу того, что поддерживает векторные операции с многомерными массивами — крайне удобная.

Кроме базового варианта (многомерные массивы в базовом варианте) NumPy включает в себя набор пакетов для решения специализированных задач, например:

  • numpy.linalg — реализует операции линейной алгебры (простое умножение векторов и матриц есть в базовом варианте);
  • numpy.random — реализует функции для работы со случайными величинами;
  • numpy.fft — реализует прямое и обратное преобразование Фурье.

Итак, я предлагаю рассмотреть подробно всего несколько возможностей NumPy и примеров их использования, которых будет достаточно, чтобы вы поняли, на сколько мощный этот инструмент!

Видео:Основы NumPy Python | Массивы, Матрицы И Операции Над НимиСкачать

Основы NumPy Python | Массивы, Матрицы И Операции Над Ними

Создание массива

Создать массив можно несколькими способами:

    преобразовать список в массив:

скопировать массив (копия и глубокая копия обязательна. ):

создать нулевой или единичный массив заданного размера:

Либо взять размеры уже существующего массива:

при создании двумерного квадратного массива можете сделать его единичной диагональной матрицей:

построить массив чисел от From (включая) до To (не включая) с шагом Step:

По умолчанию from = 0, step = 1, поэтому возможен вариант с одним параметром, интерпретируемым как To:

Либо с двумя — как From и To:

Обратите внимание, что в методе №3 размеры массива передавались в качестве одного параметра (кортеж размеров). Вторым параметром в способах №3 и №4 можно указать желаемый тип элементов массива:

Используя метод astype, можно привести массив к другому типу. В качестве параметра указывается желаемый тип:

Все доступные типы можно найти в словаре sctypes:

Видео:► 10. МАТРИЦЫ И ВЕКТОРА | Курс по Numpy.Скачать

► 10. МАТРИЦЫ И ВЕКТОРА | Курс по Numpy.

Доступ к элементам, срезы

Доступ к элементам массива осуществляется по целочисленным индексами, начинается отсчет с 0:

Если представить многомерный массив как систему вложенных одномерных массивов (линейный массив, элементы которого могут быть линейными массивами), становится очевидной возможность получать доступ к подмассивам с использованием неполного набора индексов:

С учетом этой парадигмы, можем переписать пример доступа к одному элементу:

При использовании неполного набора индексов, недостающие индексы неявно заменяются списком всех возможных индексов вдоль соответствующей оси. Сделать это явным образом можно, поставив «:». Предыдущий пример с одним индексом можно переписать в следующем виде:

«Пропустить» индекс можно вдоль любой оси или осей, если за «пропущенной» осью последуют оси с индексацией, то «:» обязательно:

Индексы могут принимать отрицательные целые значения. В этом случае отсчет ведется от конца массива:

Можно использовать не одиночные индексы, а списки индексов вдоль каждой оси:

Либо диапазоны индексов в виде «From:To:Step». Такая конструкция называется срезом. Выбираются все элементы по списку индексов начиная с индекса From включительно, до индекса To не включая с шагом Step:

Шаг индекса имеет значение по умолчанию 1 и может быть пропущен:

Значения From и To тоже имеют дефолтные значения: 0 и размер массива по оси индексации соответственно:

Если вы хотите использовать From и To по умолчанию (все индексы по данной оси) а шаг отличный от 1, то вам необходимо использовать две пары двоеточий, чтобы интерпретатор смог идентифицировать единственный параметр как Step. Следующий код «разворачивает» массив вдоль второй оси, а вдоль первой не меняет:

А теперь выполним

Как видите, через B мы изменили данные в A. Вот почему в реальных задачах важно использовать копии. Пример выше должен был бы выглядеть так:

В NumPy также реализована возможность доступа ко множеству элементов массива через булев индексный массив. Индексный массив должен совпадать по форме с индексируемым.

Как видите, такая конструкция возвращает плоский массив, состоящий из элементов индексируемого массива, соответствующих истинным индексам. Однако, если мы используем такой доступ к элементам массива для изменения их значений, то форма массива сохранится:

Над индексирующими булевыми массивами определены логические операции logical_and, logical_or и logical_not выполняющие логические операции И, ИЛИ и НЕ поэлементно:

logical_and и logical_or принимают 2 операнда, logical_not — один. Можно использовать операторы &, | и

для выполнения И, ИЛИ и НЕ соответственно с любым количеством операндов:

Что эквивалентно применению только I1.

Получить индексирующий логический массив, соответсвующий по форме массиву значений можно, записав логическое условие с именем массива в качестве операнда. Булево значение индекса будет рассчитано как истинность выражения для соответствующего элемента массива.

Найдем индексирующий массив I элементов, которые больше, чем 3, а элементы со значениями меньше чем 2 и больше 4 — обнулим:

Видео:Матрицы и векторыСкачать

Матрицы и векторы

Форма массива и ее изменение

Многомерный массив можно представить как одномерный массив максимальной длины, нарезанный на фрагменты по длине самой последней оси и уложенный слоями по осям, начиная с последних.

Для наглядности рассмотрим пример:

В этом примере мы из одномерного массива длиной 24 элемента сформировали 2 новых массива. Массив B, размером 4 на 6. Если посмотреть на порядок значений, то видно, что вдоль второго измерения идут цепочки последовательных значений.

В массиве C, размером 4 на 3 на 2, непрерывные значения идут вдоль последней оси. Вдоль второй оси идут последовательно блоки, объединение которых дало бы в результате строки вдоль второй оси массива B.

А учитывая, что мы не делали копии, становится понятно, что это разные формы преставления одного и того же массива данных. Поэтому можно легко и быстро менять форму массива, не изменяя самих данных.

Чтобы узнать размерность массива (количество осей), можно использовать поле ndim (число), а чтобы узнать размер вдоль каждой оси — shape (кортеж). Размерность можно также узнать и по длине shape. Чтобы узнать полное количество элементов в массиве можно воспользоваться значением size:

Обратите внимание, что ndim и shape — это атрибуты, а не методы!

Чтобы увидеть массив одномерным, можно воспользоваться функцией ravel:

Чтобы поменять размеры вдоль осей или размерность используется метод reshape:

Важно, чтобы количество элементов сохранилось. Иначе возникнет ошибка:

Учитывая, что количество элементов постоянно, размер вдоль одной любой оси при выполнении reshape может быть вычислен из значений длины вдоль других осей. Размер вдоль одной оси можно обозначить -1 и тогда он будет вычислен автоматически:

Можно reshape использовать вместо ravel:

Рассмотрим практическое применение некоторых возможностей для обработки изображений. В качестве объекта исследования будем использовать фотографию:

Numpy вектор в столбец

Попробуем ее загрузить и визуализировать средствами Python. Для этого нам понадобятся OpenCV и Matplotlib:

Результат будет такой:

Numpy вектор в столбец

Обратите внимание на строку загрузки:

OpenCV работает с изображениями в формате BGR, а нам привычен RGB. Мы меняем порядок байтов вдоль оси цвета без обращения к функциям OpenCV, используя конструкцию
«[:, :, ::-1]».

Уменьшим изображение в 2 раза по каждой оси. Наше изображение имеет четные размеры по осям, соответственно, может быть уменьшено без интерполяции:

Numpy вектор в столбец

Поменяв форму массива, мы получили 2 новые оси, по 2 значения в каждой, им соответствуют кадры, составленные из нечетных и четных строк и столбцов исходного изображения.
Низкое качество свзано с использованием Matplotlib, за то там видны размеры по осям. На самом деле, качество уменьшенного изображения такое:

Numpy вектор в столбец

Видео:#6. Объединение и разделение массивов | NumPy урокиСкачать

#6. Объединение и разделение массивов | NumPy уроки

Перестановка осей и траспонирование

В кроме изменения формы массива при неизменном порядке единиц данных, часто встречается необходимость изменить порядок следования осей, что естественным образом повлечет перестановки блоков данных.

Примером такого преобразования может быть транспонирование матрицы: взаимозамена строк и столбцов.

В этом примере для транспонирования матрицы A использовалась конструкция A.T. Оператор транспонирования инвертирует порядок осей. Рассмотрим еще один пример с тремя осями:

У этой короткой записи есть более длинный аналог: np.transpose(A). Это более универсальный инструмент для замены порядка осей. Вторым параметром можно задать кортеж номеров осей исходного массива, определяющий порядок их положения в результирующем массиве.

Для примера переставим первые две оси изображения. Картинка должна перевернуться, но цветовую ось оставим без изменения:

Numpy вектор в столбец

Для этого примера можно было применить другой инструмент swapaxes. Этот метод переставляет местами две оси, указанные в параметрах. Пример выше можно было реализовать так:

Видео:Екатерина Тузова - Numpy: ВекторизацияСкачать

Екатерина Тузова - Numpy: Векторизация

Объединение массивов

Объединяемые массивы должны иметь одинаковое количество осей. Объединять массивы можно с образованием новой оси, либо вдоль уже существующей.

Для объединения с образованием новой оси исходные массивы должны иметь одинаковые размеры вдоль всех осей:

Как видно из примера, массивы-операнды стали подмассивами нового объекта и выстроились вдоль новой оси, которая стоит самой первой по порядку.

Для объединения массивов вдоль существующей оси, они должны иметь одинаковый размер по всем осям, кроме выбранной для объединения, а по ней могут иметь произвольные размеры:

Для объединения по первой или второй оси можно использовать методы vstack и hstack соответсвенно. Покажем это на примере изображений. vstack объединяет изображения одинаковой ширины по высоте, а hsstack объединяет одинаковые по высоте картинки в одно широкое:

Numpy вектор в столбец

Numpy вектор в столбец

Обратите внимание на то, что во всех примерах этого раздела объединяемые массивы передаются одним параметром (кортежем). Количество операндов может быть любым, а не обязательно только 2.

Также обратите внимание на то, что происходит с памятью, при объединении массивов:

Так как создается новый объект, данные в него копируются из исходных массивов, поэтому изменения в новых данных не влияют на исходные.

Видео:БМЭ191. Python для анализа данных. Работа с векторами и матрицами в Numpy.Скачать

БМЭ191. Python для анализа данных. Работа с векторами и матрицами в Numpy.

Клонирование данных

Оператор np.repeat(A, n) вернет одномерный массив с элементами массива A, каждый из которых будет повторен n раз.

После этого преобразования, можно перестроить геометрию массива и собрать повторяющиеся данные в одну ось:

Этот вариант отличается от объединения массива с самим собой оператором stack только положением оси, вдоль которой стоят одинаковые данные. В примере выше это последняя ось, если использовать stack — первая:

Как бы ни было выполнено клонирование данных, следующим шагом можно переместить ось, вдоль которой стоят одинаковые значения, в любую позицию с системе осей:

Если же мы хотим «растянуть» какую либо ось, используя повторение элементов, то ось с одинаковыми значениями надо поставить после растягиваемой (используя transpose), а затем объединить эти две оси (используя reshape). Рассмотрим пример с растяжением изображения вдоль вертикальной оси за счет дублирования строк:

Numpy вектор в столбец

Видео:БМЭ193. Python для анализа данных. Работа с векторами и матрицами в Numpy.Скачать

БМЭ193. Python для анализа данных. Работа с векторами и матрицами в Numpy.

Математические операции над элементами массива

Если A и B массивы одинакового размера, то их можно складывать, умножать, вычитать, делить и возводить в степень. Эти операции выполняются поэлементно, результирующий массив будет совпадать по геометрии с исходными массивами, а каждый его элемент будет результатом выполнения соответствующей операции над парой элементов из исходных массивов:

Можно выполнить любую операцию из приведенных выше над массивом и числом. В этом случае операция также выполнится над каждым из элементов массива:

Учитывая, что многомерный массив можно рассматривать как плоский массив (первая ось), элементы которого — массивы (остальные оси), возможно выполнение рассматриваемых операций над массивами A и B в случае, когда геометрия B совпадает с геометрией подмассивов A при фиксированном значении по первой оси. Иными словами, при совпадающем количестве осей и размерах A[i] и B. Этом случае каждый из массивов A[i] и B будут операндами для операций, определенных над массивами.

В этом примере массив B подвергается операции с каждой строкой массива A. При необходимости умножения/деления/сложения/вычитания/возведения степень подмассивов вдоль другой оси, необходимо использовать транспонирование, чтобы поставить нужную ось на место первой, а затем вернуть ее на свое место. Рассмотри пример выше, но с умножением на вектор B столбцов массива A:

Для более сложных функций (например, для тригонометрических, экспоненты, логарифма, преобразования между градусами и радианами, модуля, корня квадратного и.д.) в NumPy есть реализация. Рассмотрим на примере экспоненты и логарифма:

С полным списком математических операций в NumPy можно ознакомиться тут.

Видео:ВВЕДЕНИЕ В БИБЛИОТЕКУ NUMPY | МАШИННОЕ ОБУЧЕНИЕСкачать

ВВЕДЕНИЕ В БИБЛИОТЕКУ NUMPY | МАШИННОЕ ОБУЧЕНИЕ

Матричное умножение

Описанная выше операция произведения массивов выполняется поэлементно. А при необходимости выполнения операций по правилам линейной алгебры над массивами как над тензорами можно воспользоваться методом dot(A, B). В зависимости от вида операндов, функция выполнит:

  • если аргументы скаляры (числа), то выполнится умножение;
  • если аргументы вектор (одномерный массив) и скаляр, то выполнится умножение массива на число;
  • если аргументы вектора, то выполнится скалярное умножение (сумма поэлементных произведений);
  • если аргументы тензор (многомерный массив) и скаляр, то выполнится умножение вектора на число;
  • если аргументы тензора, то выполнится произведение тензоров по последней оси первого аргумента и предпоследней — второго;
  • если аргументы матрицы, то выполнится произведение матриц (это частный случай произведения тензоров);
  • если аргументы матрица и вектор, то выполнится произведение матрицы и вектора (это тоже частный случай произведения тензоров).

Для выполнения операций должны совпадать соответсвующие размеры: для векторов длины, для тензоров — длины вдоль осей, по которым будет происходить суммирование поэлементных произведений.

Рассмотрим примеры со скалярами и векторами:

С тензорами посмотрим только на то, как меняется размер геометрия результирующего массива:

Для выполнения произведения тензоров с использованием других осей, вместо определенных для dot можно воспользоваться tensordot с явным указанием осей:

Мы явно указали, используем третью ось первого массива и вторую — второго (размеры по этим осям должны совпадать).

Видео:#5. Изменение формы массивов, добавление и удаление осей | NumPy урокиСкачать

#5. Изменение формы массивов, добавление и удаление осей | NumPy уроки

Агрегаторы

Агрегаторы — это методы NumPy позволяющие заменять данные интегральными характеристиками вдоль некоторых осей. Например, можно посчитать среднее значение, максимальное, минимальное, вариацию или еще какую-то характеристику вдоль какой-либо оси или осей и сформировать из этих данных новый массив. Форма нового массива будет содержать все оси исходного массива, кроме тех, вдоль которых подсчитывался агрегатор.

Для примера, сформируем массив со случайными значениями. Затем найдем минимальное, максимальное и среднее значение в его столбцах:

При таком использовании mean и average выглядят синонимами. Но эти функции обладают разным набором дополнительных параметров. У нах разные возможности по маскированию и взвешиванию усредняемых данных.

Можно подсчитать интегральные характеристики и по нескольким осям:

В этом примере рассмотрена еще одна интегральная характеристика sum — сумма.

Список агрегаторов выглядит примерно так:

  • сумма: sum и nansum — вариант корректно обходящийся с nan;
  • произведение: prod и nanprod;
  • среднее и матожидание: average и mean (nanmean), nanaverage нету;
  • медиана: median и nanmedian;
  • перцентиль: percentile и nanpercentile;
  • вариация: var и nanvar;
  • стандартное отклонение (квадратный корень из вариации): std и nanstd;
  • минимальное значение: min и nanmin;
  • максимальное значение: max и nanmax;
  • индекс элемента, имеющего минимальное значение: argmin и nanargmin;
  • индекс элемента, имеющего максимальное значение: argmax и nanargmax.

В случае использования argmin и argmax (соответственно, и nanargmin, и nanargmax) необходимо указывать одну ось, вдоль которой будет считаться характеристика.

Если не указать оси, то по умолчанию все рассматриваемые характеристики считаются по всему массиву. В этом случае argmin и argmax тоже корректно отработают и найдут индекс максимального или минимального элемента так, как буд-то все данные в массиве вытянуты вдоль одной оси командой ravel().

Еще следует отметить, агрегирующие методы определены не только как методы модуля NumPy, но и для самих массивов: запись np.aggregator(A, axes) эквивалентна записи A.aggregator(axes), где под aggregator подразумевается одна из рассмотренных выше функций, а под axes — индексы осей.

Видео:Machine Learning: Numpy урок 8. Векторные операции.Скачать

Machine Learning: Numpy урок 8. Векторные операции.

Вместо заключения — пример

Давайте построим алгоритм линейной низкочастотной фильтрации изображения.

Для начала загрузим зашумленное изображение.

Numpy вектор в столбец

Рассмотрим фрагмент изображения, чтобы увидеть шум:

Numpy вектор в столбец

Фильтровать изображение будем с использованием гауссова фильтра. Но вместо выполнения свертки непосредственно (с итерированием), применим взвешенное усреднение срезов изображения, сдвинутых относительно друг друга:

Применим эту функцию к нашему изображению единожды, дважды и трижды:

Получаем следующие результаты:

Numpy вектор в столбец

Numpy вектор в столбец

при однократном применении фильтра;

Numpy вектор в столбец

Numpy вектор в столбец

Numpy вектор в столбец

Numpy вектор в столбец

Видно, что с повышением количества проходов фильтра снижается уровень шума. Но при этом снижается и четкость изображения. Это известная проблема линейных фильтров. Но наш метод денойзинга изображения не претендует на оптимальность: это лишь демонстрация возможностей NumPy реализации свертки без итераций.

Теперь давайте посмотрим, сверткам с какими ядрами эквивалентна наша фильтрация. Для этого подвергнем аналогичным преобразованиям одиночный единичный импульс и визуализируем. На самом деле импульс будет не единичным, а равным по амплитуде 255, так как само смешивание оптимизировано под целочисленные данные. Но это не мешает оценить общий вид ядер:

Numpy вектор в столбец

Мы рассмотрели далеко не полный набор возможностей NumPy, надеюсь, этого было достаточно для демонстрации всей мощи и красоты этого инструмента!

Видео:🐍 СОЗДАНИЕ ВЕКТОРА В NUMPY || Линейная алгебра для Data Science #python #datascience #numpyСкачать

🐍 СОЗДАНИЕ ВЕКТОРА В NUMPY || Линейная алгебра для Data Science #python #datascience #numpy

Работа с векторами в Python с помощью NumPy

В этом уроке мы узнаем, как создать вектор с помощью библиотеки Numpy в Python. Мы также рассмотрим основные операции с векторами, такие как сложение, вычитание, деление и умножение двух векторов, векторное точечное произведение и векторное скалярное произведение.

Видео:numpy create vector with value rangeСкачать

numpy create vector with value range

Что такое вектор в Python?

Вектор известен как одномерный массив. Вектор в Python – это единственный одномерный массив списков, который ведет себя так же, как список Python. Согласно Google, вектор представляет направление, а также величину; особенно он определяет положение одной точки в пространстве относительно другой.

Векторы очень важны в машинном обучении, потому что у них есть величина, а также особенности направления. Давайте разберемся, как мы можем создать вектор на Python.

Видео:БЭК 203. Семинар 7. Библиотека Numpy для работы с векторами и матрицамиСкачать

БЭК 203. Семинар 7. Библиотека Numpy для работы с векторами и матрицами

Создание вектора в Python

Модуль Python Numpy предоставляет метод numpy.array(), который создает одномерный массив, то есть вектор. Вектор может быть горизонтальным или вертикальным.

Вышеупомянутый метод принимает список в качестве аргумента и возвращает numpy.ndarray.

Давайте разберемся в следующих примерах.

Пример – 1: горизонтальный вектор

Пример – 2: Вертикальный вектор

Видео:How to Create a Vector using Numpy in Python?Скачать

How to Create a Vector using Numpy in Python?

Базовые операции вектора Python

После создания вектора мы теперь будем выполнять арифметические операции над векторами.

Ниже приведен список основных операций, которые мы можем производить с векторами:

  • сложение;
  • вычитание;
  • умножение;
  • деление;
  • точечное произведение;
  • скалярные умножения.

Видео:Ориентация вектора в NumPy : Линейная алгебра для Data Science #shorts #python #репетиторматематикиСкачать

Ориентация вектора в NumPy : Линейная алгебра для Data Science #shorts #python #репетиторматематики

Сложение двух векторов

В векторном сложении это происходит поэлементно, что означает, что сложение будет происходить поэлементно, а длина будет такой же, как у двух аддитивных векторов.

Давайте разберемся в следующем примере.

Видео:Ориентация вектора в NumPy : Линейная алгебра для Data Science #shorts #python #репетиторматематикиСкачать

Ориентация вектора в NumPy : Линейная алгебра для Data Science #shorts #python #репетиторматематики

Вычитание

Вычитание векторов выполняется так же, как и сложение, оно следует поэлементному подходу, и элементы вектора 2 будут вычтены из вектора 1. Давайте разберемся в следующем примере.

Видео:БЭК 202. Семинар 7. Библиотека Numpy для работы с векторами и матрицамиСкачать

БЭК 202. Семинар 7. Библиотека Numpy для работы с векторами и матрицами

Умножение векторов

Элементы вектора 1 умножаются на вектор 2 и возвращают векторы той же длины, что и векторы умножения.

Умножение производится следующим образом.

Первый элемент вектора 1 умножается на первый элемент соответствующего вектора 2 и так далее.

Видео:Семинар. Библиотека NumpyСкачать

Семинар. Библиотека Numpy

Операция деления двух векторов

В операции деления результирующий вектор содержит значение частного, полученное при делении двух элементов вектора.

Давайте разберемся в следующем примере.

Как видно из вышеприведенного вывода, операция деления вернула частное значение элементов.

Векторное точечное произведение

Векторное скалярное произведение выполняется между двумя последовательными векторами одинаковой длины и возвращает единичное скалярное произведение. Мы будем использовать метод .dot() для выполнения скалярного произведения. Это произойдет, как показано ниже.

Давайте разберемся в следующем примере.

Векторно-скалярное умножение

В операции скалярного умножения; мы умножаем скаляр на каждую компоненту вектора. Давайте разберемся в следующем примере.

В приведенном выше коде скалярное значение умножается на каждый элемент вектора в порядке s * v =(s * v1, s * v2, s * v3).

Numpy вектор в столбец

NumPy : матрицы и операции над ними

Date:2021-02-08 09:00
summary:Библиотека NumPy
Status:draft

В этом ноутбуке из сторонних библиотек нам понадобится только NumPy . Для удобства импортируем ее под более коротким именем:

Приведем несколько способов создания матриц в NumPy .

Самый простой способ — с помощью функции numpy.array(list, dtype=None, . ).

В качестве первого аргумента ей надо передать итерируемый объект, элементами которого являются другие итерируемые объекты одинаковой длины и содержащие данные одинакового типа.

Второй аргумент является опциональным и определяет тип данных матрицы. Его можно не задавать, тогда тип данных будет определен из типа элементов первого аргумента. При задании этого параметра будет произведена попытка приведения типов.

Например, матрицу из списка списков целых чисел можно создать следующим образом:

Второй способ создания — с помощью встроенных функций numpy.eye(N, M=None, . ), numpy.zeros(shape, . ), numpy.ones(shape, . ).

Первая функция создает единичную матрицу размера N times M; если M не задан, то M = N.

Вторая и третья функции создают матрицы, состоящие целиком из нулей или единиц соответственно. В качестве первого аргумента необходимо задать размерность массива — кортеж целых чисел. В двумерном случае это набор из двух чисел: количество строк и столбцов матрицы.

Примеры:

Обратите внимание: размерность массива задается не двумя аргументами функции, а одним — кортежем!

Вот так — np.ones(7, 5) — создать массив не получится, так как функции в качестве параметра shape передается 7 , а не кортеж (7, 5) .

И, наконец, третий способ — с помощью функции numpy.arange([start, ]stop, [step, ], . ), которая создает одномерный массив последовательных чисел из промежутка [start, stop) с заданным шагом step, и метода array.reshape(shape).

Параметр shape, как и в предыдущем примере, задает размерность матрицы (кортеж чисел). Логика работы метода ясна из следующего примера:

Более подробно о том, как создавать массивы в NumPy , см. документацию.

Для получения элементов матрицы можно использовать несколько способов. Рассмотрим самые простые из них.

Для удобства напомним, как выглядит матрица d:

Элемент на пересечении строки i и столбца j можно получить с помощью выражения array[i, j].

Обратите внимание: строки и столбцы нумеруются с нуля!

Из матрицы можно получать целые строки или столбцы с помощью выражений array[i, :] или array[:, j] соответственно:

Еще один способ получения элементов — с помощью выражения array[list1, list2], где list1, list2 — некоторые списки целых чисел. При такой адресации одновременно просматриваются оба списка и возвращаются элементы матрицы с соответствующими координатами. Следующий пример более понятно объясняет механизм работы такого индексирования:

Примеры использования слайсинга:

Более подробно о различных способах индексирования в массивах см. документацию.

Следующие два способа задания массива кажутся одинаковыми:

Однако, на самом деле, это задание одномерного массива (то есть вектора) и двумерного массива:

Обратите внимание: вектор (одномерный массив) и вектор-столбец или вектор-строка (двумерные массивы) являются различными объектами в NumPy , хотя математически задают один и тот же объект. В случае одномерного массива кортеж shape состоит из одного числа и имеет вид (n,), где n — длина вектора. В случае двумерных векторов в shape присутствует еще одна размерность, равная единице.

В большинстве случаев неважно, какое представление использовать, потому что часто срабатывает приведение типов. Но некоторые операции не работают для одномерных массивов. Например, транспонирование (о нем пойдет речь ниже):

Все элементы в массиве numpy принадлежат одному типу. В этом плане массивы ближе к C, чем к привычным вам листам питона. Numpy имеет множество встренных типов, подходящих для решения большинства задач.

К массивам (матрицам) можно применять известные вам математические операции. Следут понимать, что при этом у элементов должны быть схожие размерности. Поведение в случае не совпадения размерностей хорошо описанно в документации numpy.

Напоминание теории. Операция умножения определена для двух матриц, таких что число столбцов первой равно числу строк второй.

Пусть матрицы A и B таковы, что A in mathbb^ и B in mathbb^ . Произведением матриц A и B называется матрица C, такая что c_ = sum_^ a_b_ , где c_ — элемент матрицы C, стоящий на пересечении строки с номером i и столбца с номером j.

В NumPy произведение матриц вычисляется с помощью функции numpy.dot(a, b, . ) или с помощью метода array1.dot(array2), где array1 и array2 — перемножаемые матрицы.

Матрицы в NumPy можно умножать и на векторы:

Обратите внимание: операция * производит над матрицами покоординатное умножение, а не матричное!

Более подробно о матричном умножении в NumPy см. документацию.

Массивы можно Объединенять. Есть горизонтальное и вертикальное объединение.

Массивы можно переформировать при помощи метода, который задает новый многомерный массив. Следуя следующему примеру, мы переформатируем одномерный массив из десяти элементов во двумерный массив, состоящий из пяти строк и двух столбцов:

Решите без использования циклов средставми NumPy (каждый пункт решается в 1-2 строчки)

  1. Создайте вектор с элементами от 12 до 42
  2. Создайте вектор из нулей длины 12, но его пятый елемент должен быть равен 1
  3. Создайте матрицу (3, 3), заполненую от 0 до 8
  4. Найдите все положительные числа в np.array([1,2,0,0,4,0])
  5. Умножьте матрицу размерности (5, 3) на (3, 2)
  6. Создайте матрицу (10, 10) так, чтобы на границе были 0, а внтури 1
  7. Создайте рандомный вектор и отсортируйте его
  8. Каков эквивалент функции enumerate для numpy массивов?
  9. *Создайте рандомный вектор и выполните нормализацию столбцов (из каждого столбца вычесть среднее этого столбца, из каждого столбца вычесть sd этого столбца)
  10. *Для заданного числа найдите ближайший к нему элемент в векторе
  11. *Найдите N наибольших значений в векторе

Напоминание теории. Транспонированной матрицей A^ называется матрица, полученная из исходной матрицы A заменой строк на столбцы. Формально: элементы матрицы A^ определяются как a^_ = a_ , где a^_ — элемент матрицы A^ , стоящий на пересечении строки с номером i и столбца с номером j.

В NumPy транспонированная матрица вычисляется с помощью функции numpy.transpose() или с помощью метода array.T, где array — нужный двумерный массив.

См. более подробно о numpy.transpose() и array.T в NumPy .

В следующих разделах активно используется модуль numpy.linalg, реализующий некоторые приложения линейной алгебры. Более подробно о функциях, описанных ниже, и различных других функциях этого модуля можно посмотреть в его документации.

Напоминание теории. Для квадратных матриц существует понятие определителя.

Пусть A — квадратная матрица. Определителем (или детерминантом) матрицы A in mathbb^ назовем число

где alpha_, alpha_, dots, alpha_ — перестановка чисел от 1 до n, N(alpha_, alpha_, dots, alpha_) — число инверсий в перестановке, суммирование ведется по всем возможным перестановкам длины n.

Не стоит расстраиваться, если это определение понятно не до конца — в дальнейшем в таком виде оно не понадобится.

Например, для матрицы размера 2 times 2 получается:

Вычисление определителя матрицы по определению требует порядка n! операций, поэтому разработаны методы, которые позволяют вычислять его быстро и эффективно.

В NumPy определитель матрицы вычисляется с помощью функции numpy.linalg.det(a), где a — исходная матрица.

Рассмотрим одно интересное свойство определителя. Пусть у нас есть параллелограмм с углами в точках (0, 0), (c,d), (a+c, b+d), (a, b) (углы даны в порядке обхода по часовой стрелке). Тогда площадь этого параллелограмма можно вычислить как модуль определителя матрицы left( begin a & c \ b & d end right). Похожим образом можно выразить и объем параллелепипеда через определитель матрицы размера 3 times 3.

Напоминание теории. Рангом матрицы A называется максимальное число линейно независимых строк (столбцов) этой матрицы.

В NumPy ранг матрицы вычисляется с помощью функции numpy.linalg.matrix_rank(M, tol=None), где M — матрица, tol — параметр, отвечающий за некоторую точность вычисления. В простом случае можно его не задавать, и функция сама определит подходящее значение этого параметра.

С помощью вычисления ранга матрицы можно проверять линейную независимость системы векторов.

Допустим, у нас есть несколько векторов. Составим из них матрицу, где наши векторы будут являться строками. Понятно, что векторы линейно независимы тогда и только тогда, когда ранг полученной матрицы совпадает с числом векторов. Приведем пример:

Напоминание теории. Системой линейных алгебраических уравнений называется система вида Ax = b, где A in mathbb^, x in mathbb^, b in mathbb^ . В случае квадратной невырожденной матрицы A решение системы единственно.

В NumPy решение такой системы можно найти с помощью функции numpy.linalg.solve(a, b), где первый аргумент — матрица A, второй — столбец b.

Убедимся, что вектор x действительно является решением системы:

Бывают случаи, когда решение системы не существует. Но хотелось бы все равно “решить” такую систему. Логичным кажется искать такой вектор x, который минимизирует выражение leftVert Ax - brightVert^ — так мы приблизим выражение Ax к b.

В NumPy такое псевдорешение можно искать с помощью функции numpy.linalg.lstsq(a, b, . ), где первые два аргумента такие же, как и для функции numpy.linalg.solve(). Помимо решения функция возвращает еще три значения, которые нам сейчас не понадобятся.

Напоминание теории. Для квадратных невырожденных матриц определено понятие обратной матрицы.

Пусть A — квадратная невырожденная матрица. Матрица A^ называется обратной матрицей к A, если

где I — единичная матрица.

В NumPy обратные матрицы вычисляются с помощью функции numpy.linalg.inv(a), где a — исходная матрица.

Напоминание теории. Для квадратных матриц определены понятия собственного вектора и собственного числа.

Пусть A — квадратная матрица и A in mathbb^ . Собственным вектором матрицы A называется такой ненулевой вектор x in mathbb^ , что для некоторого lambda in mathbb выполняется равенство Ax = lambda x. При этом lambda называется собственным числом матрицы A. Собственные числа и собственные векторы матрицы играют важную роль в теории линейной алгебры и ее практических приложениях.

В NumPy собственные числа и собственные векторы матрицы вычисляются с помощью функции numpy.linalg.eig(a), где a — исходная матрица. В качестве результата эта функция выдает одномерный массив w собственных чисел и двумерный массив v, в котором по столбцам записаны собственные вектора, так что вектор v[:, i] соотвествует собственному числу w[i].

Обратите внимание: у вещественной матрицы собственные значения или собственные векторы могут быть комплексными.

Вспомним некоторые нормы, которые можно ввести в пространстве mathbb^ , и рассмотрим, с помощью каких библиотек и функций их можно вычислять в NumPy .

p-норма (норма Гёльдера) для вектора x = (x_, dots, x_) in mathbb^ вычисляется по формуле:

В частных случаях при: * p = 1 получаем ell_ норму * p = 2 получаем ell_ норму

Далее нам понабится модуль numpy.linalg , реализующий некоторые приложения линейной алгебры. Для вычисления различных норм мы используем функцию numpy.linalg.norm(x, ord=None, . ), где x — исходный вектор, ord — параметр, определяющий норму (мы рассмотрим два варианта его значений — 1 и 2). Импортируем эту функцию:

ell_ норма (также известная как манхэттенское расстояние) для вектора x = (x_, dots, x_) in mathbb^ вычисляется по формуле:

Ей в функции numpy.linalg.norm(x, ord=None, . ) соответствует параметр ord=1.

ell_ норма (также известная как евклидова норма) для вектора x = (x_, dots, x_) in mathbb^ вычисляется по формуле:

Ей в функции numpy.linalg.norm(x, ord=None, . ) соответствует параметр ord=2.

Более подробно о том, какие еще нормы (в том числе матричные) можно вычислить, см. документацию.

Для двух векторов x = (x_, dots, x_) in mathbb^ и y = (y_, dots, y_) in mathbb^ ell_ и ell_ раccтояния вычисляются по следующим формулам соответственно:

Скалярное произведение в пространстве mathbb^ для двух векторов x = (x_, dots, x_) и y = (y_, dots, y_) определяется как:

Длиной вектора x = (x_, dots, x_) in mathbb^ называется квадратный корень из скалярного произведения, то есть длина равна евклидовой норме вектора:

Теперь, когда мы знаем расстояние между двумя ненулевыми векторами и их длины, мы можем вычислить угол между ними через скалярное произведение:

где alpha in [0, pi] — угол между векторами x и y.

Напоминание теории. Комплексными числами называются числа вида x + iy, где x и y — вещественные числа, а i — мнимая единица (величина, для которой выполняется равенство i^ = -1). Множество всех комплексных чисел обозначается буквой mathbb (подробнее про комплексные числа см. википедию).

В питоне комплескные числа можно задать следующим образом (j обозначает мнимую единицу):

С комплексными числами в питоне можно производить базовые арифметические операции так же, как и с вещественными числами:

Рассмотрим сложную математическую функцию на отрезке [1, 15]:

f(x) = sin(x / 5) * exp(x / 10) + 5 * exp(-x / 2)

Она может описывать, например, зависимость оценок, которые выставляют определенному сорту вина эксперты, в зависимости от возраста этого вина. Мы хотим приблизить сложную зависимость с помощью функции из определенного семейства. В этом задании мы будем приближать указанную функцию с помощью многочленов.

Как известно, многочлен степени n (то есть w_0 + w_1 x + w_2 x^2 + ldots + w_n x^n) однозначно определяется любыми n + 1 различными точками, через которые он проходит. Это значит, что его коэффициенты w_0, … w_n можно определить из следующей системы линейных уравнений:

где через x_1, . x_n, x_ обозначены точки, через которые проходит многочлен, а через f(x_1), . f(x_n), f(x_) — значения, которые он должен принимать в этих точках.

Воспользуемся описанным свойством, и будем находить приближение функции многочленом, решая систему линейных уравнений.

Поделиться или сохранить к себе: