Найти угол между единичными векторами e1 и e2 если

Нахождение угла между векторами

Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →

Углом между векторами a → и b → называется угол между лучами О А и О В .

Полученный угол будем обозначать следующим образом: a → , b → ^

Найти угол между единичными векторами e1 и e2 если

Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.

Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.

Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.

Видео:найти угол между единичными векторамиСкачать

найти угол между единичными векторами

Нахождение угла между векторами

Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .

Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

cos a → , b → ^ = a → , b → a → · b →

Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно — 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.

Решение

Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = — 9 3 · 6 = — 1 2 ,

Теперь определим угол между векторами: a → , b → ^ = a r c cos ( — 1 2 ) = 3 π 4

Ответ: cos a → , b → ^ = — 1 2 , a → , b → ^ = 3 π 4

Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:

cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Исходные данные: векторы a → = ( 2 , 0 , — 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.

Решение

  1. Для решения задачи можем сразу применить формулу:

cos a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 2 2 + 0 2 + ( — 1 ) 2 · 1 2 + 2 2 + 3 2 = — 1 70 ⇒ a → , b → ^ = a r c cos ( — 1 70 ) = — a r c cos 1 70

  1. Также можно определить угол по формуле:

cos a → , b → ^ = ( a → , b → ) a → · b → ,

но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( — 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 = — 1 cos a → , b → ^ = a → , b → ^ a → · b → = — 1 5 · 14 = — 1 70 ⇒ a → , b → ^ = — a r c cos 1 70

Ответ: a → , b → ^ = — a r c cos 1 70

Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , — 1 ) , B ( 3 , 2 ) , C ( 7 , — 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .

Решение

Найдем координаты векторов по координатам заданных точек A C → = ( 7 — 2 , — 2 — ( — 1 ) ) = ( 5 , — 1 ) B C → = ( 7 — 3 , — 2 — 2 ) = ( 4 , — 4 )

Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( — 1 ) · ( — 4 ) 5 2 + ( — 1 ) 2 · 4 2 + ( — 4 ) 2 = 24 26 · 32 = 3 13

Ответ: cos A C → , B C → ^ = 3 13

Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:

A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) ,

b → — a → 2 = a → + b → — 2 · a → · b → · cos ( a → , b → ) ^

и отсюда выведем формулу косинуса угла:

cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 — b → — a → 2 a → · b →

Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

Хотя указанный способ имеет место быть, все же чаще применяют формулу:

Видео:Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

Угол между векторами.

Найти угол между единичными векторами e1 и e2 если

Видео:Как находить угол между векторамиСкачать

Как находить угол между векторами

Формула вычисления угла между векторами

cos α =a · b
| a |·| b |

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Примеры задач на вычисление угла между векторами

Примеры вычисления угла между векторами для плоских задачи

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 3 = 12 + 12 = 24.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 3 2 = √ 16 + 9 = √ 25 = 5

Найдем угол между векторами:

cos α =a · b=24=24= 0.96
| a | · | b |5 · 525

Решение: Найдем скалярное произведение векторов:

a · b = 5 · 7 + 1 · 5 = 35 + 5 = 40.

Найдем модули векторов:

| a | = √ 7 2 + 1 2 = √ 49 + 1 = √ 50 = 5√ 2
| b | = √ 5 2 + 5 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α =a · b=40=40=4= 0.8
| a | · | b |5√ 2 · 5√ 2505

Примеры вычисления угла между векторами для пространственных задач

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 + 0 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 4 2 + 2 2 = √ 16 + 16 + 4 = √ 36 = 6

Найдем угол между векторами:

cos α =a · b=28=14
| a | · | b |5 · 615

Решение: Найдем скалярное произведение векторов:

a · b = 1 · 5 + 0 · 5 + 3 · 0 = 5.

Найдем модули векторов:

| a | = √ 1 2 + 0 2 + 3 2 = √ 1 + 9 = √ 10
| b | = √ 5 2 + 5 2 + 0 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b | a | · | b | = 5 √ 10 · 5√ 2 = 1 2√ 5 = √ 5 10 = 0.1√ 5

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Нахождение угла между векторами через координаты. 9 класс.Скачать

Нахождение угла между векторами  через координаты. 9 класс.

Как найти угол между векторами

Вы будете перенаправлены на Автор24

Видео:Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnlineСкачать

Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnline

Угол между векторами

Для того, чтобы мы могли ввести формулу для вычисления угла между векторами через координаты, нужно сначала разобраться с самим понятием угла между этими векторами.

Пусть нам даны два вектора $overline$ и $overline$. Возьмем в пространстве какую-либо точку $O$ и отложим от нее векторы $overline=overline$ и $overline=overline$, тогда угол $AOB$ будет носить название угол между двумя векторами. (рис. 1).

Рисунок 1. Угол между векторами. Автор24 — интернет-биржа студенческих работ

Причем мы будем считать, что если векторы $overline$ и $overline$ будут сонаправленными, или один или оба из них будет нулевым вектором, то угол между этими векторами будет равняться $0^circ$.

Видео:Единичный векторСкачать

Единичный вектор

Нахождение угла между векторами в пространстве с помощью скалярного произведения

Вспомним сначала, что называется скалярным произведением и каким образом его можно находить.

Скалярным произведением двух векторов будем называть такой скаляр (или число), который равняется произведению длин двух этих векторов с косинусом угла между данными векторами.

Математически это может выглядеть следующим образом:

Также, помимо того, как из самого определения 1, для нахождения скалярного произведения можно пользоваться следующей теоремой.

Скалярное произведение двух данных векторов $overline$ и $overline$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, равняется сумме произведений их соответствующих координат.

Математически выглядит следующим образом

$overlinecdot overline=δ_1 δ_2+β_1 β_2+γ_1 γ_2$

Готовые работы на аналогичную тему

Обозначение: $overlinecdot overline$.

С помощью скалярного произведения мы можем найти косинус угла между векторами. Пусть нам даны векторы $overline$ и $overline$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, соответственно. Из определения 2 получим, что

Из теоремы 1 мы знаем, что $overlinecdot overline=δ_1 δ_2+β_1 β_2+γ_1 γ_2$, следовательно

Расписывая по формуле длины вектора значения $|overline|$ и $|overline|$, окончательно получим

Найдя значение косинуса, мы легко найдем и значение самого угла.

Найти косинус угла между векторами $overline$ и $overline$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.

Решение.

Найдем скалярное произведение между данными векторами через координаты:

$overlinecdot overline=1cdot 3+(-2)cdot 0+2cdot 4=11$

Найдем длины этих векторов:

В результате, получим

Видео:11 класс, 5 урок, Угол между векторамиСкачать

11 класс, 5 урок, Угол между векторами

Нахождение угла между векторами с помощью векторного произведения

Вспомним сначала, определение векторного произведения и каким образом его можно находить.

Векторным произведением двух векторов называется такой вектор, который будет перпендикулярен обоим данным векторам, и его длина равна произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют ту же ориентацию, как и декартова система координат.

Математически это выглядит следующим образом:

  1. $|overlineхoverline|=|overline||overline|sin⁡∠(overline,overline)$
  2. $overlineхoverline⊥overline$, $overlineхoverline⊥overline$
  3. $(overlineхoverline,overline,overline)$ и $(overline,overline,overline)$ одинаково ориентированы (рис. 2)

Рисунок 2. Векторное произведение. Автор24 — интернет-биржа студенческих работ

Для нахождения вектора векторного произведения можно пользоваться следующей формулой:

С помощью векторного произведения мы можем найти синус угла между данными векторами. Пусть нам даны векторы $overline$ и $overline$ с координатами $(δ_1,δ_2,δ_3)$ и $(β_1,β_2,β_3)$, соответственно. Из определения 3 получим, что

Найдем вектор векторного произведения по формуле:

$overlineхoverline=beginoverline&overline&overline\δ_1&δ_2&δ_3\β_1&β_2&β_3end=(δ_2 β_3-δ_3 β_2,δ_3 β_1-δ_1 β_3,δ_1 β_2-δ_2 β_1)$

Расписывая по формуле длины вектора значения $|overline|$, $|overline|$ и $|overlineхoverline|$, окончательно получим

Найдя значение синуса, мы легко найдем и значение самого угла между векторами через координаты через формулу.

Найти синус угла между векторами $overline$ и $overline$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.

Решение.

Найдем вектор векторного произведения между данными векторами по формуле:

Найдем длины этих векторов:

В результате, получим

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 20 07 2021

📽️ Видео

Разложение вектора по базису. 9 класс.Скачать

Разложение вектора по базису. 9 класс.

Скалярное произведение векторов. 9 класс.Скачать

Скалярное произведение векторов. 9 класс.

Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

9 класс, 17 урок, Угол между векторамиСкачать

9 класс, 17 урок, Угол между векторами

Векторное произведение векторов | Высшая математикаСкачать

Векторное произведение векторов | Высшая математика

Векторы. Метод координат. Вебинар | МатематикаСкачать

Векторы. Метод координат. Вебинар | Математика

✓ Векторы. Новая задача в ЕГЭ | Задание 2. ЕГЭ. Математика. Профильный уровень | Борис ТрушинСкачать

✓ Векторы. Новая задача в ЕГЭ | Задание 2. ЕГЭ. Математика. Профильный уровень | Борис Трушин

105. Угол между векторамиСкачать

105. Угол между векторами

Математика без Ху!ни. Угол между векторами, применение скалярного произведения.Скачать

Математика без Ху!ни. Угол между векторами, применение скалярного произведения.

Орт вектора. Нормировать вектор. Найти единичный векторСкачать

Орт вектора.  Нормировать вектор.  Найти единичный вектор

2 37 Нахождение орта вектораСкачать

2 37 Нахождение орта вектора
Поделиться или сохранить к себе: