Как находить векторы в параллелограмме

Сложение векторов по правилу параллелограмма

Видео:Сложение векторов. Правило параллелограмма. 9 класс.Скачать

Сложение векторов. Правило параллелограмма. 9 класс.

Правило параллелограмма — что это такое

Чтобы сложить два вектора можно воспользоваться правилом параллелограмма.

Правило параллелограмма: если два неколлинеарных вектора a и b привести к общему началу, то вектор c=a+b совпадает с диагональю параллелограмма, построенного на векторах a и b. Начало вектора c совпадает с началом этих векторов.

Кроме того, по правилу параллелограмма можно осуществлять вычитание.

Видео:1. Векторы и параллелограмм задачи №1Скачать

1. Векторы и параллелограмм задачи №1

Сложение векторов по правилу параллелограмма

Для того чтобы сложить два вектора по правилу параллелограмма, необходимо:

  1. Взять произвольную точку А.
  2. Отложить от точки векторы a и b.
  3. Построить на векторах a и b параллелограмм.
  4. Диагональ параллелограмма и будет суммой векторов a+b

Также существуют еще два правила нахождения векторной суммы:

1. Правило треугольника.

Чтобы сложить два вектора, нужно из произвольной точки отложить первый вектор, из его конца отложить второй вектор и построить вектор, который соединит начало первого с концом второго. Полученный вектор — искомая сумма.

2. Правило многоугольника.

Чтобы сложить несколько векторов, нужно от произвольной точки отложить первый вектор, из его конца — второй вектор, из конца второго — третий, и так далее. Затем соединить начальную точку с концом последнего вектора, полученный вектор — искомая сумма.

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Переместительный и сочетательный законы, доказательство

Для более ясного понимания правила параллелограмма, важно знать законы сложения векторов.

Переместительный закон: от перемены мест слагаемых сумма не меняется a+b=b+a.

От произвольной точки A отложим векторы AB=a и AD=b.

Построим параллелограмм ABCD.

По правилу треугольника заметим: AC=AB+BC, то есть равен сумме векторов a+b.

AC=AB+BC, AC=a+b⇒ a+b=b+a.

С другой стороны, AC=AD+DC, AC=b+a.

Что и требовалось доказать.

Именно переместительный закон применяется в правиле параллелограмма.

Сочетательный закон: (a+b)+c=a+(b+c).

От произвольной точки A отложим вектор AB=a, от точки B вектор BC=b, от точки C вектор CD=c.

Запишем сумму (a+b)+c через векторы:

Сумма AB+BC=AC (по правилу треугольника).

Запишем сумму a+(b+c) через векторы:

Что и требовалось доказать.

Видео:8 класс, 44 урок, Законы сложения векторов. Правило параллелограммаСкачать

8 класс, 44 урок, Законы сложения векторов. Правило параллелограмма

Примеры решения задач

Дан параллелограмм, построенный на векторах AB=6 см, BC=8 см. ∠B=90º. Найти сумму векторов AB+BC.

По правилу параллелограмма сумма векторов AB+BC=BD.

BD-диагональ параллелограмма. Диагональ можно найти по формуле:

B D = √ ( A B ² + B C ² — 2 * A B * B C * cos B ) .

ABCD — прямоугольник, так как ∠B=90º ⇒cosB=0.

Видео:№770. Дан параллелограмм ABCD. Выразите вектор АС через векторы а и b , если:Скачать

№770. Дан параллелограмм ABCD. Выразите вектор АС через векторы а и b , если:

Векторы на ЕГЭ по математике. Действия над векторами

Как находить векторы в параллелограмме

Стандартное определение: «Вектор — это направленный отрезок». Обычно этим и ограничиваются знания выпускника о векторах. Кому нужны какие-то «направленные отрезки»?

А в самом деле, что такое векторы и зачем они?
Прогноз погоды. «Ветер северо-западный, скорость 18 метров в секунду». Согласитесь, имеет значение и направление ветра (откуда он дует), и модуль (то есть абсолютная величина) его скорости.

Величины, не имеющие направления, называются скалярными. Масса, работа, электрический заряд никуда не направлены. Они характеризуются лишь числовым значением — «сколько килограмм» или «сколько джоулей».

Физические величины, имеющие не только абсолютное значение, но и направление, называются векторными.

Скорость, сила, ускорение — векторы. Для них важно «сколько» и важно «куда». Например, ускорение свободного падения Как находить векторы в параллелограмменаправлено к поверхности Земли, а величина его равна 9,8 м/с 2 . Импульс, напряженность электрического поля, индукция магнитного поля — тоже векторные величины.

Вы помните, что физические величины обозначают буквами, латинскими или греческими. Стрелочка над буквой показывает, что величина является векторной:

Как находить векторы в параллелограмме

Вот другой пример.
Автомобиль движется из A в B . Конечный результат — его перемещение из точки A в точку B , то есть перемещение на вектор Как находить векторы в параллелограмме.

Как находить векторы в параллелограмме

Теперь понятно, почему вектор — это направленный отрезок. Обратите внимание, конец вектора — там, где стрелочка. Длиной вектора называется длина этого отрезка. Обозначается: Как находить векторы в параллелограммеили Как находить векторы в параллелограмме

До сих пор мы работали со скалярными величинами, по правилам арифметики и элементарной алгебры. Векторы — новое понятие. Это другой класс математических объектов. Для них свои правила.

Когда-то мы и о числах ничего не знали. Знакомство с ними началось в младших классах. Оказалось, что числа можно сравнивать друг с другом, складывать, вычитать, умножать и делить. Мы узнали, что есть число единица и число ноль.
Теперь мы знакомимся с векторами.

Понятия «больше» и «меньше» для векторов не существует — ведь направления их могут быть разными. Сравнивать можно только длины векторов.

А вот понятие равенства для векторов есть.
Равными называются векторы, имеющие одинаковые длины и одинаковое направление. Это значит, что вектор можно перенести параллельно себе в любую точку плоскости.
Единичным называется вектор, длина которого равна 1 . Нулевым — вектор, длина которого равна нулю, то есть его начало совпадает с концом.

Удобнее всего работать с векторами в прямоугольной системе координат — той самой, в которой рисуем графики функций. Каждой точке в системе координат соответствуют два числа — ее координаты по x и y , абсцисса и ордината.
Вектор также задается двумя координатами: Как находить векторы в параллелограмме

Здесь в скобках записаны координаты вектора Как находить векторы в параллелограмме— по x и по y .
Находятся они просто: координата конца вектора минус координата его начала.

Как находить векторы в параллелограмме

Если координаты вектора заданы, его длина находится по формуле

Как находить векторы в параллелограмме

Видео:Выразить векторы. Разложить векторы. Задачи по рисункам. ГеометрияСкачать

Выразить векторы. Разложить векторы. Задачи по рисункам. Геометрия

Сложение векторов

Для сложения векторов есть два способа.

1 . Правило параллелограмма. Чтобы сложить векторы Как находить векторы в параллелограммеи Как находить векторы в параллелограмме, помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторов Как находить векторы в параллелограммеи Как находить векторы в параллелограмме.

Как находить векторы в параллелограмме

Помните басню про лебедя, рака и щуку? Они очень старались, но так и не сдвинули воз с места. Ведь векторная сумма сил, приложенных ими к возу, была равна нулю.

2 . Второй способ сложения векторов — правило треугольника. Возьмем те же векторы Как находить векторы в параллелограммеи Как находить векторы в параллелограмме. К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов Как находить векторы в параллелограммеи Как находить векторы в параллелограмме.

Как находить векторы в параллелограмме

По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.

Как находить векторы в параллелограмме

Представьте, что вы идете из пункта А в пункт В , из В в С , из С в D , затем в Е и в F . Конечный результат этих действий — перемещение из А в F .

При сложении векторов Как находить векторы в параллелограммеи Как находить векторы в параллелограммеполучаем:

Как находить векторы в параллелограмме

Как находить векторы в параллелограмме

Видео:Площадь параллелограмма, построенного на данных векторахСкачать

Площадь параллелограмма, построенного на данных векторах

Вычитание векторов

Вектор Как находить векторы в параллелограмменаправлен противоположно вектору Как находить векторы в параллелограмме. Длины векторов Как находить векторы в параллелограммеи Как находить векторы в параллелограммеравны.

Как находить векторы в параллелограмме

Теперь понятно, что такое вычитание векторов. Разность векторов Как находить векторы в параллелограммеи Как находить векторы в параллелограмме— это сумма вектора Как находить векторы в параллелограммеи вектора Как находить векторы в параллелограмме.

Как находить векторы в параллелограмме

Видео:2. Векторы в параллелограмме Решение задач №2Скачать

2. Векторы в параллелограмме Решение задач №2

Умножение вектора на число

При умножении вектора Как находить векторы в параллелограммена число k получается вектор, длина которого в k раз отличается от длины Как находить векторы в параллелограмме. Он сонаправлен с вектором Как находить векторы в параллелограмме, если k больше нуля, и направлен противоположно Как находить векторы в параллелограмме, если k меньше нуля.

Как находить векторы в параллелограмме

Видео:Вычитание векторов. 9 класс.Скачать

Вычитание векторов. 9 класс.

Скалярное произведение векторов

Векторы можно умножать не только на числа, но и друг на друга.

Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними.

Как находить векторы в параллелограмме

Обратите внимание — перемножили два вектора, а получился скаляр, то есть число. Например, в физике механическая работа равна скалярному произведению двух векторов — силы и перемещения:

Как находить векторы в параллелограмме

Если векторы перпендикулярны, их скалярное произведение равно нулю.
А вот так скалярное произведение выражается через координаты векторов Как находить векторы в параллелограммеи Как находить векторы в параллелограмме:

Как находить векторы в параллелограмме

Из формулы для скалярного произведения можно найти угол между векторами:

Как находить векторы в параллелограмме

Эта формула особенно удобна в стереометрии. Например, в задаче 14 Профильного ЕГЭ по математике нужно найти угол между скрещивающимися прямыми или между прямой и плоскостью. Часто векторным методом задача 14 решается в несколько раз быстрее, чем классическим.

В школьной программе по математике изучают только скалярное произведение векторов.
Оказывается, кроме скалярного, есть еще и векторное произведение, когда в результате умножения двух векторов получается вектор. Кто сдает ЕГЭ по физике, знает, что такое сила Лоренца и сила Ампера. В формулы для нахождения этих сил входят именно векторные произведения.

Векторы — полезнейший математический инструмент. В этом вы убедитесь на первом курсе.

Как находить векторы в параллелограммеОнлайн-курс «Математика 10+11 100 баллов»

— Теория: учебник Анны Малковой + 70 ч. видеоразборов.
— 144 ч. мастер-классов: 8 онлайн мастер-классов с Анной Малковой в месяц.
— Тренажер для отработки задач ЕГЭ (800+ задач): автоматическая + ручная проверки.
— Связь с Анной Малковой (чаты и почта).
— 9 репетиционных ЕГЭ: ежемесячно.
— Контроль: страница личных достижений учащегося, отчеты родителям.
— Личный кабинет.

Видео:ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать

ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэ

Сложение и вычитание векторов

Как находить векторы в параллелограмме

Теорема 1 От любой точки ( K ) можно отложить вектор единственный ( overrightarrow ) .

Существование: Имеем два следующих случая:

Здесь получаем, что искомый нами вектор совпадает с вектором ( overrightarrow ) .

Как находить векторы в параллелограмме

Из данного выше построения сразу же будет следовать единственность данного вектора.

Видео:Найдите площадь параллелограмма, построенного на векторахСкачать

Найдите площадь параллелограмма, построенного на векторах

Сумма векторов. Сложение векторов. Правило треугольника

Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.

Как находить векторы в параллелограмме

Суммой нескольких векторов ( vec ) , ( vec ) , ( vec,;ldots ) называется вектор ( vec ) , получающийся в результате последовательного сложения данных векторов.

Такая операция выполняется по правилу многоугольника.

Как находить векторы в параллелограмме

Сумма векторов в координатах
При сложении двух векторов соответствующие координаты складываются.
( vec + vec = left( <+ , + , + > right) )

Отметим несколько свойств сложения двух векторов:

Для произвольного вектора ( overrightarrow ) выполняется равенство

Для произвольных точек ( A, B и C ) справедливо следующее равенство

Замечание Таким способом также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.

Как находить векторы в параллелограмме

Разность векторов. Вычитание векторов

Как находить векторы в параллелограмме

Разность двух одинаковых векторов равна нулевому вектору :
( vec — vec = vec )

Длина нулевого вектора равна нулю:
( left| vec right| = 0 )

Разность векторов в координатах
При вычитании двух векторов соответствующие координаты также вычитаются.
( vec — vec = left( <- , — , — > right) )

Видео:Площадь параллелограмма по векторамСкачать

Площадь параллелограмма по векторам

Умножение вектора на число

Пусть нам дан вектор ( overrightarrow ) и действительное число ( k ) .

Определение Произведением вектора ( overrightarrow ) на действительное число ( k ) называется вектор ( overrightarrow ) удовлетворяющий следующим условиям:

Длина вектора ( overrightarrow ) равна ( left|overrightarrowright|=left|kright||overrightarrow| ) ;

Векторы ( overrightarrow ) и ( overrightarrow ) сонаправлены, при ( kge 0 ) и противоположно направлены, если ( kle 0 )

Обозначение: ( overrightarrow=koverrightarrow ) .

🔍 Видео

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

№748. Диагонали параллелограмма ABCD пересекаются в точке O. Равны ли векторы?Скачать

№748. Диагонали параллелограмма ABCD пересекаются в точке O. Равны ли векторы?

№771. В параллелограмме ABCD диагонали пересекаются в точке ОСкачать

№771. В параллелограмме ABCD диагонали пересекаются в точке О

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Сложение векторов. 9 класс.Скачать

Сложение векторов. 9 класс.

Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.
Поделиться или сохранить к себе: