Найдите вектор ав аа1 с1в1

ABCDA1B1C1D1 — параллелепипед, М — точка пересечения DC1 и –D1C, (АВ) ⃗ = a ⃗, (AD) ⃗ = Ь ⃗, (АА1) ⃗ = с ⃗. Разложите вектор (AM)

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Ваш ответ

Видео:№786. Отрезки AA1, ВВ1 и СС1 — медианы треугольника ABC. Выразите векторы AA1, BB1, СС1Скачать

№786. Отрезки AA1, ВВ1 и СС1 — медианы треугольника ABC. Выразите векторы AA1, BB1, СС1

решение вопроса

Видео:Координаты вектора в пространстве. 11 класс.Скачать

Координаты вектора  в пространстве. 11 класс.

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,921
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:№364. Точка К—середина ребра В1С1 куба ABCDA1B1C1D1. Разложите вектор АК по векторам а = АВ,Скачать

№364. Точка К—середина ребра В1С1 куба ABCDA1B1C1D1. Разложите вектор АК по векторам а = АВ,

Смешанное, векторное и скалярное произведение векторов

Задача:

Найдите вектор ав аа1 с1в1Дан параллелепипед ABCDA1B1C1D1, построен на векторах AB(4,3,0), AD(2,1,2) и AA1(-3,-2,5).
Найти:

Решение:

  • а) Объем параллелепипеда будем искать через смешанное произведение векторов (AB AD AA1). Мы знаем, что модуль смешанного произведения векторов равен объему параллелепипеда, построенному на этих векторах.
(AB AD AA1)=
430
212
-3-25
=20 — 18 + 0 — 0 — 30 + 16=-12.

Мы нашли смешанное произведение, ещё надо его взять по модулю и найдём объем параллелепипеда:
VABCDA1B1C1D1=12.
б) Площадь, как мы уже знаем, можно искать через векторное произведение векторов. Грань ABCD построена на векторах AB и AD, найдём их векторное произведение. SABCD= |[AB AD]|.

[AB AD]=
ijk
430
212
=6i — 8j — 2k,

Теперь найдём модуль этого вектора:

SABCD= |[AB AD]|=√(36+64+4)=2√(26).
[AD AA1]=
ijk
212
-3-25
=9i — 16jk,

SADD1A1= |[AD AA1]|=√(81+256+1)=13√2.

  • в) Что бы найти длину высоты, проведенной из вершины A1 на грань ABCD, используем формулу для нахождения объема параллелепипеда V=h SABCD. С этой формулы видим:
    h=
    V
    SABCD
    =
    12
    2√(26)
    =
    6
    √(26)
    =
    3√(26)
    13
    .
  • г) Косинус угла λ1, между ребром AB и диагональю B1D будем высчитывать с помощью скалярного произведения векторов
    cos(λ1)=
    (AB B1D)
    |AB| * |B1D|
    .

    Координаты вектора AB мы имеем, от вектор B1D надо найти. Для этого используем следующую формулу:
    B1D = B1A1 + A1A + AD = — AB — AA1 + AD1 = — (4, 3, 0) — (-3, -2, 5) + (2, 1, 2); (Не забывайте, что всё это векторы, надо сложить их соответствующие координаты. )
    Сделав вычисления по этой формуле, мы найдём, что вектор B1D имеет координаты (1, 0, -3). Теперь надо найти длину векторов AB и B1D:
    |AB|=√(16+9+0)=5, |B1D|=√(1+0+9)=√(10).
    Найдём скалярное произведение векторов AB и B1D, (AB B1D)=4*1 + 3*0 + 0*(-3)=4.
    Теперь, имея все данные мы можем подставить их в нашу формулу:

    cos(λ1)=
    4
    5√(10)
    =
    2√(10)
    25
    .

    д) Что бы найти cos(λ2), мы используем то, что угол между двумя плоскостями равен углу между перпендикулярами до этих плоскостей. А как мы знаем, векторное произведение — это и есть перпендикуляр до плоскости перемножаемых векторов. Поэтому в роле перпендикуляра к плоскости ADD1A1 мы можем взять вектор [AD AA1], который мы нашли в пункте б), и знаем, что его координаты (9, -16, -1), точно также и для плоскости ABCD — вектор [AB AD] с координатами (6, -8, -2).
    Теперь нам остаётся, как в предыдущем варианте найти только косинус угла между двумя векторами, координаты которых нам известны.

    cos(λ2)=
    6*9 + (-8)*(-16) + (-2)*(-1)
    2√(26) * 13√(2)
    =
    46√(13)
    169
    .

    Вот таким не хитрым способом мы и нашли косинус угла между гранями ABCD и ADD1A1.

    Видео:№330. Нарисуйте параллелепипед ABCDA1B1C1D1 и обозначьте векторы C1D1, BA1Скачать

    №330. Нарисуйте параллелепипед ABCDA1B1C1D1 и обозначьте векторы C1D1, BA1

    Найдите вектор ав аа1 с1в1

    4.6. Задачи с решениями

    1. В параллелепипеде обозначим . Выразить через векторы a, b, с диагонали параллелепипеда и диагонали граней.

    Решение. Сделаем чертёж. Пользуясь правилом сложения векторов, получаем:

    AC = AB + AD = b + с, AC1 = AA1 + AC = a + b + с .

    Из того же треугольника AA1C получаем: A1C = AC — AA1 = b + с — a.

    Чтобы найти B1C, заметим, что B1C = A1D, так как у этих векторов совпадают и длины, и направления. Поэтому B1C = A1D = AD — AA1 = с — a.

    Аналогично: DC1 = AB1 = AA1 + AB = a + b .

    2. Найти длину и направляющие косинусы вектора AB, если его начало и конец находятся в точках A(7, 6), B(2 — 6).

    Решение. Так как каждая точка задана двумя координатами, то рассматривается вектор на плоскости. Находим его координаты, вычитая из координат точки B (конца вектора) координаты точки A (начала вектора): AB = (2 — 7, —6 — 6) = (—5, —12). Находим длину: |AB | = 13, направляющие косинусы: .

    3. Найти координату z вектора a = (1, —3, z), если известно, что она отрицательна, а модуль |a| = . Где окажется конец вектора a, если его отложить из точки M(5, —2, 1)?

    Решение. По условию, . поэтому ZN = —8.

    4. Найти расстояние между точками A(5, —2, 4) и B( —1, 0, 6).

    Решение. Расстояние равно длине вектора AB. Найдём:

    5. При каких p, q векторы a = (2,p, — 1), b = qi + 9j + 3k будут коллинеарными?

    📸 Видео

    №361. Диагонали параллелепипеда ABCDA1B1C1D1 пересекаются в точке О. Разложите векторыСкачать

    №361. Диагонали параллелепипеда ABCDA1B1C1D1 пересекаются в точке О. Разложите векторы

    Орт вектора. Нормировать вектор. Найти единичный векторСкачать

    Орт вектора.  Нормировать вектор.  Найти единичный вектор

    №358. Дан параллелепипед ABCDA1B1C1D1. Назовите вектор, начало и конец которого являются вершинамиСкачать

    №358. Дан параллелепипед ABCDA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами

    №336. Даны точки A, В, С и D. Представьте вектор АВ в виде алгебраической суммы следующихСкачать

    №336. Даны точки A, В, С и D. Представьте вектор АВ в виде алгебраической суммы следующих

    Что такое вектора? | Сущность Линейной Алгебры, глава 1Скачать

    Что такое вектора? | Сущность Линейной Алгебры, глава 1

    №359. Дан параллелепипед ABCDA1B1C1D1. а) Разложите вектор BD1 по векторам ВА, ВС и ВВ1.Скачать

    №359. Дан параллелепипед ABCDA1B1C1D1. а) Разложите вектор BD1 по векторам ВА, ВС и ВВ1.

    18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

    18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

    Единичный векторСкачать

    Единичный вектор

    №327. На рисунке 97 изображен параллелепипед ABCDA1B1C1D1. Назовите вектор, нСкачать

    №327. На рисунке 97 изображен параллелепипед ABCDA1B1C1D1. Назовите вектор, н

    8 класс, 40 урок, Понятие вектораСкачать

    8 класс, 40 урок, Понятие вектора

    1. Векторы и параллелограмм задачи №1Скачать

    1. Векторы и параллелограмм задачи №1

    ЗАДАЧА - ЧУДО! Победи мастера, найди угол альфа!Скачать

    ЗАДАЧА - ЧУДО! Победи мастера, найди угол альфа!

    Как находить угол между векторамиСкачать

    Как находить угол между векторами

    №934. Найдите координаты вектора АВ, зная координаты его начала и конца: а) А (2; 7), B (-2; 7);Скачать

    №934. Найдите координаты вектора АВ, зная координаты его начала и конца: а) А (2; 7), B (-2; 7);
  • Поделиться или сохранить к себе: