теория по математике 📈 планиметрия
Треугольник – это геометрическая фигура, состоящая из трех точек на плоскости, которые не лежат на одной прямой, и трех последовательно соединяющих их отрезков.
Точки называют вершинами треугольника, а отрезки – сторонами. Вершины треугольника обозначают заглавными латинскими буквами.
Виды треугольников по углам
Треугольники классифицируются по углам: остроугольные; тупоугольные; прямоугольные.
Остроугольные | Тупоугольные | Прямоугольные |
Остроугольным треугольником называется треугольник, у которого все три угла острые. На рисунке показан такой остроугольный треугольник АВС. | Тупоугольным называется треугольник, у которого есть тупой угол. В треугольнике может быть только один тупой угол. На рисунке показан треугольник такого вида, где угол М – тупой. | Прямоугольным называется треугольник, у которого есть угол, равный 90 0 (прямой угол). На рисунке угол С равен 90 0 . Такой угол в любом прямоугольном треугольнике – единственный. |
Виды треугольников по сторонам
Треугольники классифицируются по сторонам: разносторонний; равнобедренный; равносторонний.
Разносторонний | Равнобедренный | Равносторонний |
Треугольник называется разносторонним, если у него длины всех сторон разные. На рисунке показан такого вида треугольник АВС. | Треугольник называется равнобедренным, если у него две стороны равны. На рисунке показан равнобедренный треугольник АВС, у которого АВ=ВС. | Треугольник называется равносторонним, если у него все стороны равны. На рисунке показан такой треугольник, у него АВ=ВС=АС. |
Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать
Медиана, биссектриса, высота, средняя линия треугольника
Медиана
Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника.
В любом треугольнике можно провести три медианы, так как сторон – три. На рисунке показаны медианы треугольника АВС: AF, EC, BD.
По данному рисунку также видно, что медианы треугольника пересекаются в одной точке – точке О. Это справедливо для любого треугольника.
Биссектриса
Биссектрисой треугольника называется луч, исходящий из вершины угла треугольника и делящий его пополам.
В любом треугольнике можно провести три биссектрисы, так как углов – три. На рисунке показаны биссектрисы треугольника ЕDC: DD1, EE1 и CC1.
По рисунку также видно, что биссектрисы имеют одну точку пересечения. Это справедливо для любого треугольника.
Высота
Высота треугольника – это перпендикуляр, проведенный из вершины треугольника к противоположной стороне.
На рисунке показаны высоты треугольника АВС: АН1, ВН2 и СН3.
По рисунку видно, что высоты треугольника пересекаются в одной точке. Это также справедливо для любого треугольника.
Средняя линия
Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
Средней линией треугольника называется отрезок, соединяющий середины двух его сторон. На рисунке показаны три средние линии треугольника АВС: MN, KN и MK.
Средняя линия обладает следующими свойствами: она параллельна противоположной стороне; она равна половине противоположной стороны. Так, на данном рисунке MN параллельна АС, KN параллельна АВ, MK параллельна ВС. Также MN=0,5АС, KN=0,5АВ и MK=0,5ВС. Например, если известно, что сторона АС=20 см, то средняя линия МN равна половине АС, то есть МN=10 см. Или, например, если средняя линия МК=12 см, то сторона ВС будет в два раза больше, то есть ВС=24 см.
Выполним чертеж окружности, описанной около треугольника АВС, покажем на нём все дополнительные элементы.
При построении прямой АО образовалась точка пересечения этой прямой с окружностью, обозначим её буквой Е и соединим с точкой В и с точкой С. Получим вписанные углы АВЕ и АСЕ, опирающиеся на диаметр АЕ, следовательно угол АВЕ и АСЕ равны по 90 0 .
Рассмотрим треугольники АВЕ и АВF: у них углы АВЕ и АFВ прямые, угол ЕАВ – общий, следовательно, эти треугольники подобны.
Составим отношение сторон:
A E A B . . = A B A F . . откуда по свойству пропорции АВ 2 =АЕ ∙ АF
Рассмотрим треугольники АСЕ и ADF, у которых углы АСЕ и AFD прямые, а угол FAD – общий. Значит, треугольники АСЕ и ADF подобны.
Составим отношение сторон:
A E A D . . = A C A F . . ; откуда выразим AD= A E ∙ A F А C . . = A E ∙ A F A C . .
Теперь рассмотрим наши два полученных равенства: АВ 2 =АЕ ∙ АF и AD= A E ∙ A F A C . .
Видим, что 36 2 =АЕ ∙ АF (подставили вместо АВ значение 36), также у нас известно, что АС=54. Найдем из второго равенства AD= A E ∙ A F A C . . = 36 2 54 . . = 24
Теперь найдем CD=AC-AD=54-24=30
pазбирался: Даниил Романович | обсудить разбор | оценить
На клетчатой бумаге с размером клетки 1х1 изображен треугольник АВС. Найти длину его средней линии, параллельной стороне АС.
Для решения задачи надо вспомнить свойство средней линии: она параллельна основанию и равна его половине. Следовательно, чтобы найти длину средней линии, надо сторону треугольника разделить пополам. Найдем сторону треугольника, которой параллельна средняя линия, т.е. АС, сосчитав клетки, получим, что АС равна 8. Значит, средняя линия равна 8:2=4.
pазбирался: Даниил Романович | обсудить разбор | оценить
В треугольнике АВС известно, что угол ВАС равен 84 0 , АD – биссектриса. Найдите угол ВАD. Ответ дайте в градусах.
Ключевое слово в данной задаче – биссектриса. Вспоминаем, что она делит угол пополам. Нам надо найти величину угла ВАD, следовательно он равен половине угла ВАС, то есть 84 0 :2=42 0
pазбирался: Даниил Романович | обсудить разбор | оценить
Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Высоты в остроугольном треугольнике
В любом треугольнике все три высоты пересекаются в одной точке. Все высоты в остроугольном треугольнике лежат внутри треугольника (как и точка пересечения высот).
Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке E. Доказать, что углы BB1C1 и BCC1 равны; углы B1C1С и BB1C равны.
Дано: ΔABC — остроугольный,
Около любого треугольника можно описать окружность. Центр окружности, описанной около прямоугольного треугольника, лежит на середине его гипотенузы. Радиус такой окружности равен половине гипотенузы.
Центр описанной около прямоугольного треугольника BB1C окружности лежит на середине гипотенузы BC, радиус этой окружности равен половине BC.
Центр описанной около прямоугольного треугольника BCC1 окружности — середина гипотенузы BC, радиус равен половине BC.
Значит эти треугольники вписаны в одну и ту же окружность.
Следовательно, точки B, C, B1 и C1лежат на одной окружности.
∠B1C1С=∠B1BC (как вписанные углы, опирающиеся на одну дугу B1C).
Что и требовалось доказать.
То есть решение такого рода задач начинаем с поиска прямоугольных треугольников с общей гипотенузой.
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
2 Comments
Здравствуйте!
во втором случае: Угол ВВ1С — прямой, имелся в виду угол В1ВС, как опирающийся на дугу В1С
Видео:Высоты треугольника.Скачать
Свойство высот треугольника
Три высоты треугольника пересекаются в одной точке. В случае тупоугольного треугольника пересекаются продолжения высот.
Пусть треугольник АВС – остроугольный.
Проведем в треугольнике АВС высоты ВН и СР. Проведем также прямые, параллельные сторонам треугольника АВС и проходящие через вершины, противоположные этим сторонам.
Заметим, что четырехугольник АВСF – параллелограмм, поскольку его противоположные стороны параллельны. Это значит, что CF = AB.
Точно так же, ABKC – параллелограмм и KC = АВ.
Поскольку АВ и FK параллельны, СР является серединным перпендикуляром к FK. Аналогично, ВН – серединный перпендикуляр к EK, а АМ – серединный перпендикуляр к ЕF. Три серединных перпендикуляра к сторонам треугольника ЕKF пересекаются в точке О. И это значит, что три высоты треугольника АВС пересекаются в точке О.
Для тупоугольного треугольника доказательство аналогично.
Задача ЕГЭ по теме «Высоты треугольника»
В остроугольном треугольнике ABC угол A равен . BD и CE — высоты, пересекающиеся в точке O. Найдите угол DOE. Ответ дайте в градусах.
В треугольниках ACE и OCD угол C – общий, углы E и D равны . Значит, треугольники ACE и OCD подобны, углы CAE и DOC равны, и . Тогда угол DOE – смежный с углом DOC. Он равен .
🔥 Видео
№701. Начертите три треугольника: остроугольный, прямоугольный и тупоугольный. В каждыйСкачать
Построение высоты в треугольникеСкачать
7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольникиСкачать
Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать
8 класс, 37 урок, Теорема о пересечении высот треугольникаСкачать
Геометрия 7.Треугольники урок 6. Высота треугольника. Определение, свойства, точки пересечения высотСкачать
Построение биссектрисы в треугольникеСкачать
32. Остроугольный, прямоугольный и тупоугольный треугольникиСкачать
Геометрия 7 класс (Урок№9 - Треугольник.)Скачать
7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать
Высота в прямоугольном треугольнике. 8 класс.Скачать
Виды треугольников: остроугольный, прямоугольный ,тупоугольный. Как начертить треугольникСкачать
Высоты треугольника и связанные с ними подобияСкачать
№16 ЕГЭ 2023 по математике. Свойство ортоцентра за 5 минут. Четко и без водыСкачать
Площадь треугольника. Как найти площадь треугольника?Скачать