Теорема о неравенстве треугольников

Неравенство треугольника — определение и вычисление с примерами решения

Содержание:

Неравенство треугольника:

Опыт нам подсказывает, что путь из точки А в точку С по прямой АС короче, чем по ломаной ABC (рис. 255), т. е. АС 12+21 (рис. 258).

Теорема о неравенстве треугольников

Замечание. Из неравенств треугольника Теорема о неравенстве треугольниковследует, что Теорема о неравенстве треугольниковто есть любая сторона треугольника больше разности двух других его сторон. Так, для стороны а справедливо Теорема о неравенстве треугольников

Пример:

Внутри треугольника ABC взята точка М (рис. 259). Доказать, что периметр треугольника АМС меньше периметра треугольника ABC.

Теорема о неравенстве треугольников

Решение:

Так как у треугольников ABC и АМС сторона АС — общая, то достаточно доказать, что AM + МС Теорема о неравенстве треугольниковB (рис. 108, а).

2) Отложим на стороне АВ отрезок АF, равный стороне AC (рис. 108, б).

Теорема о неравенстве треугольников

3) Так как АF Теорема о неравенстве треугольников1.

4) Угол 2 является внешним углом треугольника ВFС, следовательно, Теорема о неравенстве треугольников2 > Теорема о неравенстве треугольниковB.

5) Так как треугольник FАС является равнобедренным, то Теорема о неравенстве треугольников1 = Теорема о неравенстве треугольников2.

Таким образом, Теорема о неравенстве треугольниковBСА > Теорема о неравенстве треугольников1, Теорема о неравенстве треугольников1 = Теорема о неравенстве треугольников2 и Теорема о неравенстве треугольников2 > Теорема о неравенстве треугольниковB.

Отсюда получаем, что Теорема о неравенстве треугольниковВСА > Теорема о неравенстве треугольниковB.

Теорема 2. В треугольнике против большего угла лежит большая сторона.

1) Пусть в треугольнике АBС Теорема о неравенстве треугольниковС > Теорема о неравенстве треугольниковB. Докажем, что АВ > АС (см. рис. 108, а). Доказательство проведем методом от противного.

2) Предположим, что это не так. Тогда: либо АВ = АС, либо АВ Теорема о неравенстве треугольниковC.

В каждом из этих случаев получаем противоречие с условием: Теорема о неравенстве треугольниковC > Теорема о неравенстве треугольниковB. Таким образом, сделанное предположение неверно и, значит, АВ > АС.

Из данной теоремы следует утверждение: в прямоугольном треугольнике катет меньше гипотенузы.

Действительно, гипотенуза лежит против прямого угла, а катет — против острого. Поскольку прямой угол больше острого, то по теореме 2 получаем, что гипотенуза больше катета.

Теорема 3 (признак равнобедренного треугольника). Если два угла треугольника равны, то треугольник равнобедренный.

Пусть в треугольнике два угла равны. Тогда равны стороны, лежащие против этих углов. В самом деле, если предположить, что одна из указанных сторон больше другой, то по теореме 1 угол, лежащий против этой стороны, будет больше угла, лежащего против другой стороны, что противоречит условию равенства углов.

Значит, наше предположение неверно и в треугольнике две стороны равны, т. е. треугольник является равнобедренным.

Неравенство треугольника

Докажем, что длина каждой стороны треугольника меньше суммы длин двух других сторон.

Теорема 4. Длина каждой стороны треугольника меньше суммы длин двух других его сторон.

1) Пусть ABC — произвольный треугольник. Докажем, например, что выполняется неравенство АВ Теорема о неравенстве треугольниковl, следовательно, верно неравенство Теорема о неравенстве треугольниковАВF > Теорема о неравенстве треугольников2.

4) Так как в треугольнике против большего угла лежит большая сторона (теорема 2), то АВ

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Неравенства треугольника. 7 класс.Скачать

Неравенства треугольника. 7 класс.

Теорема о неравенстве треугольника

Видео:✓ Неравенство треугольника | Ботай со мной #126 | Борис ТрушинСкачать

✓ Неравенство треугольника | Ботай со мной #126 | Борис Трушин

Понятие термина неравенство треугольника и его сторон

Определение: неравенство треугольника в геометрии, математическом анализе и смежных дисциплинах — это свойство, при котором длина любой стороны треугольника всегда меньше суммы длин двух других его сторон.

Теорема о неравенстве треугольников вытекает из теоремы о соотношении сторон и углов треугольника: против большей стороны в треугольнике лежит больший угол и, наоборот, против большего угла лежит большая сторона.

А В > А С > В С , ∠ С > ∠ В > ∠ А .

Видео:7 класс, 34 урок, Неравенство треугольникаСкачать

7 класс, 34 урок, Неравенство треугольника

Теорема о неравенстве треугольника

Основная формулировка: каждая сторона треугольника меньше суммы двух других сторон.

Доказать: А В А С + С В .

Проведем C D = C B , A C + C D = A D . ∠ 1 = ∠ 2 .

В треугольнике АВD требуется доказать, что АВ

Пользуясь теоремой о соотношении углов и сторон: А В A D = A C + C B .

Что и требовалось доказать.

Видео:Неравенство треугольника. Геометрия 7 класс. Доказательство. Задачи по рисункам.Скачать

Неравенство треугольника. Геометрия 7 класс. Доказательство. Задачи по рисункам.

Формула и следствие

Для любых трех точек А, В, С, не лежащих на одной прямой справедливы неравенства:

Длина каждой стороны треугольника больше разности длин двух других его сторон.

По теореме о неравенстве треугольника:

Видео:Неравенство треугольникаСкачать

Неравенство треугольника

Примеры решения задач

Существует ли треугольник со сторонами: 1 м , 2 м , 3 м .

Решение: по теореме о неравенстве треугольника 3 = 2 + 1 ⇒ 3 = 3

Ответ: такого треугольника не существует.

Существует ли треугольник со сторонами: 3 м , 4 м , 5 м .

Ответ: такой треугольник существует.

Видео:Неравенство треугольника ★ Любая сторона треугольника меньше суммы двух других сторонСкачать

Неравенство треугольника ★ Любая сторона треугольника меньше суммы двух других сторон

Краткие упражнения для самостоятельной работы

Одна сторона треугольника равна 2, другая 5. Какой может быть третья сторона, если известно, что ее длина тоже целое число?

Периметр равнобедренного треугольника равен 13, при этом две его стороны отличаются по длине на 4. Чему могут быть равны эти стороны?

Одна сторона треугольника равна 12, другая 5. Чему может быть равна самая короткая сторона этого треугольника? Самая длинная? Средняя по длине?

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Неравенство треугольника

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Теорема о неравенстве треугольников

Данный видеоурок предназначен для самостоятельного ознакомления с темой «Неравенство треугольников», которая входит в школьный курс геометрии за седьмой класс. На занятии учитель познакомит с неравенством треугольника, вытекающим из теоремы о сторонах и углах треугольника.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть уроки «Связь числа и геометрии. Часть 2. Треугольники. Координаты», «Основы геометрии»

🎬 Видео

Геометрия 7 класс (Урок№24 - Соотношения между сторонами и углами треугольника. Неравенство треуг.)Скачать

Геометрия 7 класс (Урок№24 - Соотношения между сторонами и углами треугольника. Неравенство треуг.)

7. Треугольники. Часть 1. Üçbucaqlar. 1ci hissə.Скачать

7. Треугольники. Часть 1. Üçbucaqlar. 1ci hissə.

ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать

ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫ

Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Неравенство треугольникаСкачать

Неравенство треугольника

Соотношения между сторонами и углами треугольника. 7 класс.Скачать

Соотношения между сторонами и углами треугольника. 7 класс.

Признаки равенства треугольников. 7 класс.Скачать

Признаки равенства треугольников. 7 класс.

7 класс, 15 урок, Первый признак равенства треугольниковСкачать

7 класс, 15 урок, Первый признак равенства треугольников

Удалили с экзамена ОГЭ Устное Собеседование shorts #shortsСкачать

Удалили с экзамена ОГЭ Устное Собеседование shorts #shorts

Неравенство о средних | Ботай со мной #048 | Борис Трушин !Скачать

Неравенство о средних | Ботай со мной #048 | Борис Трушин !

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Теорема Пифагора в деле🦾 Длины сторон считаем по клеткам ☝️Скачать

Теорема Пифагора в деле🦾 Длины сторон считаем по клеткам ☝️

7 класс, 33 урок, Теорема о соотношениях между сторонами и углами треугольникаСкачать

7 класс, 33 урок, Теорема о соотношениях между сторонами и углами треугольника
Поделиться или сохранить к себе: