Матрица полных затрат и вектор валового выпуска

Межотраслевой баланс

С помощью сервиса в онлайн режиме можно:

  • найти коэффициенты полных материальных затрат, определить вектор валовой продукции;
  • составить межотраслевой баланс, составить схему межотраслевого баланса труда;
  • проверить продуктивность матрицы.
  • Шаг №1
  • Шаг №2
  • Видеоинструкция
  • Оформление Word

Межотраслевой баланс отражает производство и распределение валового национального продукта в отраслевом разрезе, межотраслевые производственные связи, использование материальных и трудовых ресурсов, создание и распределение национального дохода.

Система уравнений X = AX + Y называется экономико-математической моделью межотраслевого баланса (МОБ) или моделью «затраты — выпуск». C помощью нее можно выполнить следующие расчеты:

  1. подставив в модель объемы валовой продукции каждой отрасли Xi, можно определить объем конечной продукции отрасли Yj: Y = (E — A)X
  2. задав величины конечной продукции всех отраслей Yj, можно определить величины валовой продукции каждой отрасли Xi: X = (E — A) -1 Y
  3. установив для ряда отраслей величины валовой продукции, а для всех остальных отраслей задав объемы конечной продукции, можно найти объемы конечной продукции первых отраслей и объемы валовой продукции вторых.

Здесь A – матрица прямых затрат, коэффициенты которой, aij показывают затраты i-й отрасли на производство единицы продукции j-й отрасли. Введем обозначение B = (E — A) -1 . Матрица B называется матрицей полных материальных затрат, коэффициенты которой, bij показывают полный объем продукции i-й отрасли, используемой для производства единицы продукции j-й отрасли. С учетом линейности соотношений эффект распространения спроса ΔX, вызванный изменением конечного спроса на величину ΔY рассчитывается как: ΔX = B·ΔY
Через C=A-B обозначают матрицу косвенных затрат.

Пример №1 . Для трехотраслевой экономической системы заданы матрица коэффициентов прямых материальных затрат A и вектор конечной продукции Y .

Пример №2 . Дан межотраслевой баланс трехотраслевой модели хозяйства:

№ отрасли потребления123Конечный продуктВаловый продуктY’
№ отрасли1202060100200150
отрасли220406080200100
производства32001070100100

Определить:
1) технологическую матрицу;
2) матрицу коэффициентов полных затрат;
3) дать экономический анализ каждого столбца матрицы коэффициентов полных затрат;
4) определить валовый выпуск X’ на новый ассортимент конечной продукции Y’;

Решение.
Находим валовой объем продукции xi;
x1 = 20 + 20 + 60 + 100 = 200
x2 = 20 + 40 + 60 + 80 = 200
x3 = 20 + 0 + 10 + 70 = 100

ОтрасльПотреблениеКонечный продуктВаловой выпуск
Производство

202060100200
20406080200
2001070100

По формуле aij = xij / xj находим коэффициенты прямых затрат:
a11 = 20/200 = 0.1; a12 = 20/200 = 0.1; a13 = 60/100 = 0.6; a21 = 20/200 = 0.1; a22 = 40/200 = 0.2; a23 = 60/100 = 0.6; a31 = 20/200 = 0.1; a32 = 0/200 = 0; a33 = 10/100 = 0.1;

0.10.10.6
0.10.20.6
0.100.1

Определим матрицу коэффициентов полных затрат с помощью формул обращения невырожденных матриц.
а) Находим матрицу (E-A):

(E-A) =
0,9-0,1-0,6
-0,10,8-0,6
-0,100,9

б) Вычисляем обратную матрицу (E-A) -1 :

0,9-0,1-0,6
-0,10,8-0,6
-0,100,9

Найдем величины валовой продукции трех отраслей

X’ = (B -1 *Y’) =
1,230,150,92
0,261,281,03
0,140,01711,21
*
150
100
100
=
292
270
144

Пример №3 . В модели межотраслевого баланса

ПроизводствоПотреблениеКонечная продукцияВаловая продукция
123
11051570100
220
330
Оплата труда30
Прибыль DD

прибыль D равна:
D = Валовая продукция – Затраты на производство – Оплата труда = 100 – (10+20+30) – 30 = 10.

Видео:Модель Леонтьева. Теория и решение задачи.Скачать

Модель Леонтьева. Теория и решение задачи.

Определение. Соотношение

называется уравнением линейного межотраслевого баланса. Вместе с описанием матричного представления это уравнение называется моделью Леонтьева.

Уравнение межотраслевого баланса позволяет решить следующие задачи:

  • 1) найти вектор конечного продукта Y при известной матрице прямых затрат и заданном векторе валового продукта Х: ;
  • 2) найти вектор валового выпуска Х при известной матрице прямых затрат, который обеспечивает заданный вектор конечного продукта Y: или , откуда .

Умножив обе части уравнения слева на , получим

Видео:Модель межотраслевого баланса. Часть 1 ТеорияСкачать

Модель межотраслевого баланса. Часть 1 Теория

Матрица

Матрица полных затрат и вектор валового выпуска

называется матрицей полных затрат.

Определение. Коэффициентами полных затрат называются величины sij валового выпуска продукции i-й отрасли, необходимого для обеспечения выпуска единицы конечного продукта j-й отрасли .

Заметим, что при известной матрице полных затрат А можно найти матрицу полных затрат

Определение. Матрица называется продуктивной, если для любого вектора существует решение уравнения . В этом случае модель Леонтьева называется продуктивной.

Заметим, что матрица А продуктивна, если для любых и

Матрица полных затрат и вектор валового выпуска

и существует номер j такой, что

Матрица полных затрат и вектор валового выпуска

Определение. Чистой продукцией отрасли называется разность между валовой продукцией этой отрасли и затратами продукции всех отраслей на производство данной отрасли.

Пример 1. Данные об исполнении баланса за отчетный период (усл. ден. ед.) приведены в таблице:

Видео:Матрица коэффициентов полных затратСкачать

Матрица коэффициентов полных затрат

Матрица полных затрат и вектор валового выпуска

Модели данного класса регулярно строятся во многих странах мира. С их помощью решаются задачи анализа, планирования и прогнозирования развития экономических систем. Задачи, в решении которых могут быть применены матричные модели:

· регулирование экономического развития;

· расчеты по составлению долгосрочных планов;

· расчеты по оптимизации внешней торговли;

· составление межрегиональных балансов;

· расчеты по ценообразованию и т.д.

Типичным примером матричных моделей считается экономико-математическая модель межотраслевого баланса (модель В.В. Леонтьева). За разработку и применение этого метода к решению важных экономических проблем в 1973 году Василий Васильевич Леонтьев был удостоен Нобелевской премии в области экономики.

В западной литературе модели данного класса именуются как метод «затраты-выпуск».

ОБЩАЯ СТРУКТУРА МЕЖОТРАСЛЕВОГО БАЛАНСА

Центральным элементом матричных моделей является межотраслевой баланс. Он представляет собой таблицу, характеризующую связи между различными отраслями экономики страны.

Матрица полных затрат и вектор валового выпуска

Производственная сфера экономики представлена в балансе в виде совокупности n отраслей. Баланс состоит из четырех разделов (квадрантов).

Первый квадрант представляет собой матрицу, состоящую из (n+1) строки и (n+1) столбца. Этот раздел является важнейшей частью баланса, поскольку именно здесь содержится информация о межотраслевых связях.

Матрица полных затрат и вектор валового выпуска

Величина xij показывает, сколько продукции i-й отрасли было использовано в процессе материального производства j-й отрасли. Величины xij характеризуют межотраслевые поставки сырья, материалов, топлива и энергии, обусловленные производственной деятельностью. В i строке величины xi1, xi2, . xij, . xin описывают распределение продукции i-й отрасли как средства производства для других отраслей. Величины x1j, x2j, . xij, . xnj j-го столбца в этом случае будут описывать потребление j-й отраслью сырья, материалов, топлива и энергии на производственные нужды. Таким образом, первый раздел баланса дает общую картину распределения продукции на текущее производственное потребление всех n отраслей материального производства .

В зависимости от того, в каких единицах измеряются потоки продукции в балансе, существуют различные его варианты:

· в натуральном выражении;

· в денежном (стоимостном) выражении,

· в трудовых измерителях.

Рассмотрим баланс в стоимостном выражении, в котором потоки продукции измеряются на основе стоимости произведенной продукции в некоторых фиксированных ценах. Поскольку в этом случае величины xij отражают стоимость продукции, т.е. измеряются в одних и тех же единицах, их можно просуммировать.

Сумма по строке представляет собой сумму всех поставок iй отрасли другим отраслям.

Сумма по столбцу характеризует производственные затраты j-й отрасли на приобретение продукции других отраслей.

На пересечении (n+1)-й строки и (n+1)-го столбца находится промежуточный продукт экономики

Матрица полных затрат и вектор валового выпуска

Матрица полных затрат и вектор валового выпуска

Второй раздел посвящен конечному продукту.

Матрица полных затрат и вектор валового выпуска

Столбец конечного продукта — (n+2)-й столбец. Величина yi — потребление продукции i-й отрасли, не идущее на текущие производственные нужды.

В конечную продукцию, как правило, включаются:

· возмещение выбытия основных средств;

· личное потребление населения;

· расходы на содержание государственного аппарата;

· а также сальдо экспорта и импорта.

Ко второму разделу относится также столбец валовых выпусков (Xi). В пределах первого и второго разделов справедливо соотношение:

Матрица полных затрат и вектор валового выпуска

Третий квадрант межотраслевого баланса отражает стоимостную структуру валового продукта отраслей. В (n+2)-й строке таблицы отражена условно чистая продукция (Vj), представляющая собой разницу между величиной валовой продукции отрасли и суммарными затратами отрасли:

Матрица полных затрат и вектор валового выпуска

Матрица полных затрат и вектор валового выпуска

Условно чистая продукция подразделяется на амортизационные отчисления и чистую продукцию отрасли .

Важнейшими составляющими чистой продукции отрасли являются заработная плата, прибыль и налоги. Можно показать, что суммарный конечный продукт равен суммарной условно чистой продукции

Матрица полных затрат и вектор валового выпуска

Матрица полных затрат и вектор валового выпуска

Таким образом, в третьем разделе также фигурирует конечный продукт, но если во втором разделе он разбивается на величины yi, характеризующие структуру потребления, то в третьем разделе величины Vj показывают, в каких отраслях произведена стоимость конечного продукта.

Четвертый раздел располагается под вторым.

Он характеризует перераспределения в экономике, осуществляемые через финансово-кредитную систему. В плановых расчетах четвертый раздел, как правило, не используется, и поэтому здесь рассматриваться не будет.

Итак, межотраслевой баланс — это способ представления статистической информации об экономике страны .

Он строится на основе агрегирования результатов деятельности отдельных предприятий. Такой баланс называют отчетным. Кроме этого строятся плановые балансы, предназначенные для разработки сбалансированных планов развития экономики.

n СТАТИЧЕСКАЯ МЕЖОТРАСЛЕВАЯ МОДЕЛЬ

Статические межотраслевые модели используются для разработки планов выпуска и потребления продукции и основываются на соотношениях межотраслевого баланса.

При построении модели делают следующие предположения:

1) все продукты, производимые одной отраслью, однородны и рассматриваются как единое целое, т.е. предполагается, что каждая отрасль производит один продукт ;

2) в каждой отрасли имеется единственная технология производства ;

3) нормы производственных затрат не зависят от объёма выпускаемой продукции ;

4) не допускается замещение одного сырья другим.

В действительности эти предположения не выполняются. Даже на отдельном предприятии обычно: выпускаются различные виды продукции, используются различные технологии, удельные затраты зависят от объема выпуска и допускается замена одного сырья другим. Следовательно, эти предположения тем более неверны для отрасли. Однако такие модели получили широкое распространение и, как показала практика, они вполне адекватны и применимы для составления планов выпуска продукции. При этих предположениях величина xij может быть представлена следующим образом:

Матрица полных затрат и вектор валового выпуска

Величина aij называется коэффициентом прямых материальных затрат . Она показывает, какое количество продукции i-й отрасли идет на производство единицы продукции j-й отрасли. Коэффициенты aij считаются в межотраслевой модели постоянными.

Матрица полных затрат и вектор валового выпуска

МАТРИЦА КОЭФФИЦИЕНТОВ ПРЯМЫХ МАТЕРИАЛЬНЫХ ЗАТРАТ

Подставляя выражение (3) в формулу (1), получим (4)

Матрица полных затрат и вектор валового выпуска

Можно записать в матричном виде

Матрица полных затрат и вектор валового выпуска

Коэффициенты прямых материальных затрат являются основными параметрами статической межотраслевой модели .

Их значения могут быть получены двумя путями:

1) статистически : коэффициенты определяются на основе анализа отчётных балансов за прошлые годы.

2) нормативно : предполагается, что отрасль состоит из отдельных производств, для которых уже разработаны нормативы затрат, на их основе рассчитываются среднеотраслевые коэффициенты. Выражение (4) принято называть балансом распределения продукции. Его можно использовать для анализа и планирования структуры экономики. Если известны коэффициенты прямых материальных затрат, то, задав конечный продукт по каждой отрасли, можно определить необходимые валовые выпуски отраслей. В этом заложена основная идея использования матричных моделей для планирования производства.

Преобразуем выражение (4):

Матрица полных затрат и вектор валового выпуска

где E — единичная матрица.

До начала планирования следует выяснить, существует ли матрица, обратная матрице (E-A), и не будут ли получены отрицательные значения выпуска по отраслям. Установим некоторые свойства коэффициентов прямых материальных затрат:

1. Неотрицательность , т.е. aij ≥ 0, это утверждение следует из неотрицательности величин xij и положительности валовых выпусков Xj

2. Сумма элементов матрицы A по любому из столбцов меньше единицы . Доказательство:

Для любой отрасли условно чистая продукция есть величина положительная, поскольку включает в себя заработную плату, амортизацию, прибыль и т.д., т.е. Vj>0. Поэтому, используя соотношение (2), можно записать:

Матрица полных затрат и вектор валового выпуска

Матрица полных затрат и вектор валового выпуска

Матрица полных затрат и вектор валового выпуска

При выполнении этих двух условий матрица B = (E — A) — 1 существует если ее элементы неотрицательны. Говорят, что в этом случае матрица прямых затрат А является продуктивной . Перепишем формулу

Матрица полных затрат и вектор валового выпуска

Матрица полных затрат и вектор валового выпуска

Матрица В носит название матрицы полных материальных затрат, а ее элементы bij называют коэффициентами полных материальных затрат . Коэффициент bij показывает, каков должен быть валовой выпуск iй отрасли для того, чтобы обеспечить выпуск единицы конечного продукта j-й отрасли.

Можно показать, что

Матрица полных затрат и вектор валового выпуска

Умножим обе части на (E — A):

Матрица полных затрат и вектор валового выпуска

Из соотношения (7) следует bijaij, таким образом, коэффициент полных материальных затрат bij, описывающий потребность в выпуске продукции i-й отрасли в расчете на единицу конечного продукта j-й отрасли, не меньше коэффициента прямых материальных затрат aij, рассчитываемого на единицу валового выпуска. Кроме того, из соотношения (7) для диагональных элементов матрицы B следует: bii ≥ 1, взаимосвязь коэффициентов прямых и полных материальных затрат проследим на примере.

Пусть единицей выпуска хлебопекарной промышленности является хлеб. Взаимосвязь коэффициентов прямых и полных материальных затрат.

Матрица полных затрат и вектор валового выпуска

Полные затраты электроэнергии для нашего примера складываются из прямых затрат и косвенных затрат всех уровней. Косвенные затраты высоких уровней являются незначительными и при практических расчетах ими можно пренебречь.

Пример : Даны коэффициенты прямых затрат aij и конечный продукт Y для трехотраслевой экономики

Матрица полных затрат и вектор валового выпуска

a) коэффициенты полных затрат;

b) вектор валового продукта;

c) межотраслевые поставки продукции;

d) проверить продуктивность матрицы А;

e) заполнить схему межотраслевого баланса.

Для решения использовать функции Excel

Матрица полных затрат и вектор валового выпуска

Далее вычисляем матрицу коэффициентов полных затрат В-(Е-А).

Для вычисления матрицы В:

a. Выделить диапазон ячеек для размещения матрицы

b. Выбрать функцию МОБР в категории математические

c. Ввести диапазон ячеек, где содержится Е-А

d. Нажать клавиши CTRL+SHIFT+ENTER

Матрица полных затрат и вектор валового выпуска

Все элементы матрицы В неотрицательны, следовательно матрица А продуктивна. Вычислим вектор валового выпуска Х по формуле X = BY

Для умножения матриц необходимо:

a. Выделить диапазон ячеек для размещения результата умножения матриц

b. Выбрать функцию МУМНОЖ в категории математические

c. Ввести диапазоны ячеек, где содержатся матрицы B и Y .

Нажать клавиши CTRL+SHIFT+ENTER

Матрица полных затрат и вектор валового выпуска

Матрица полных затрат и вектор валового выпуска

1. Области применения матричных моделей?

2. Структура межотраслевого баланса?

3. Связь между конечной и условно чистой продукцией?

4. Экономический смысл, свойства и способы расчета коэффициентов прямых материальных затрат?

5. Коэффициенты полных материальных затрат?

6. Экономический смысл коэффициентов прямых затрат труда.?

📺 Видео

Собственные векторы и собственные числа линейного оператораСкачать

Собственные векторы и собственные числа линейного оператора

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Модель Леонтьева "затраты-выпуск" в MS ExcelСкачать

Модель Леонтьева "затраты-выпуск" в MS Excel

Модель межотраслевого баланса. Часть 2 ПрактикаСкачать

Модель межотраслевого баланса. Часть 2 Практика

А.7.35 Собственные вектора и собственные значения матрицыСкачать

А.7.35 Собственные вектора и собственные значения матрицы

Уравнение межотраслевого балансаСкачать

Уравнение межотраслевого баланса

Взаимно перпендикулярные плоскости. Определение кратчайшей расстоянии от точки до прямойСкачать

Взаимно перпендикулярные плоскости. Определение кратчайшей расстоянии от точки до прямой

Линейная комбинация. Линейная зависимость (независимость) матриц.Скачать

Линейная комбинация. Линейная зависимость (независимость) матриц.

МатЭк Семинар 8О-406б Модель ЛеонтьеваСкачать

МатЭк Семинар 8О-406б Модель Леонтьева

Математика в экономике Тема Применение матриц в экономике Коренюгина ЛМСкачать

Математика в экономике Тема Применение матриц в экономике  Коренюгина ЛМ

Решение системы уравнений методом обратной матрицы - bezbotvyСкачать

Решение системы уравнений методом обратной матрицы - bezbotvy

МатЭк 8О-408б Модель ЛеонтьеваСкачать

МатЭк 8О-408б Модель Леонтьева

Модель многоотраслевой экономики (балансовый анализ)Скачать

Модель многоотраслевой экономики (балансовый анализ)

Собственные значения и собственные векторыСкачать

Собственные значения и собственные векторы

Матрицы: начало. Высшая математикаСкачать

Матрицы: начало. Высшая математика

A.7.15 Ортогональная матрицаСкачать

A.7.15 Ортогональная матрица

Урок 1.Поиск решения, оптимизация, оптимальный план производстваСкачать

Урок 1.Поиск решения, оптимизация, оптимальный план производства
Поделиться или сохранить к себе: