- Register
- Login
- Newsletter
- Главный Попко
- Прямая m параллельна прямой n которая параллельна плоскости a. Верно ли утверждение, что прямая m обязательно параллельна плоскости a.
- Прямая n параллельна прямой m параллельна плоскости а?
- Прямые a и b параллельны?
- Верно ли утверждение, прямая параллельная плоскости, параллельна любой прямой, лежащей в этой плоскости?
- Выберите верные утверждения?
- Плоскости параллельны?
- Отметьте верные утверждения?
- Докажите, что если плоскость проходит через прямую, параллельную другой прямой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна первой прямой?
- Одна из двух параллельных прямых параллельна некоторой плоскости?
- Две плоскости пересекаются по прямой а ?
- Прямая а параллельна прямой б, б параллельна плоскости альфа?
- Выберете верное утверждение : а)если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая лежит в данной плоскости ; б)если плоскость альфа проходит через прямую, параллельн?
- Параллельные прямая и плоскость, признак и условия параллельности прямой и плоскости
- Параллельные прямые и плоскость – основные сведения
- Параллельность прямой и плоскости – признак и условия параллельности
- 🎥 Видео
Register
Do you already have an account? Login
Login
Don’t you have an account yet? Register
Newsletter
Submit to our newsletter to receive exclusive stories delivered to you inbox!
- Главная
- Вопросы & Ответы
- Вопрос 7170418
Главный Попко
Видео:Параллельность прямой и плоскости. 10 класс.Скачать
Прямая m параллельна прямой n которая параллельна плоскости a. Верно ли утверждение, что прямая m обязательно параллельна плоскости a.
Видео:№50. Плоскости α и β параллельны, прямая m лежит в плоскости α. Докажите, что прямаяСкачать
Прямая n параллельна прямой m параллельна плоскости а?
Геометрия | 10 — 11 классы
Прямая n параллельна прямой m параллельна плоскости а.
Следует ли из этого, что прямая n параллельна плоскости а.
Если одна прямая пареллельна другой, а другая — параллельна третьей, то первая пряиая будет параллельна третьей.
Следовательно, прямая n параллельна плоскости а.
Видео:Параллельность прямой к плоскостиСкачать
Прямые a и b параллельны?
Прямые a и b параллельны.
Прямая a параллельна плоскости альфа, прямая b параллельна плоскости бета.
Как могут расположены плоскости?
Видео:№46. Прямая m параллельна диагонали BD ромба ABCD и не лежит в плоскости ромба.Скачать
Верно ли утверждение, прямая параллельная плоскости, параллельна любой прямой, лежащей в этой плоскости?
Верно ли утверждение, прямая параллельная плоскости, параллельна любой прямой, лежащей в этой плоскости?
Видео:10 класс, 6 урок, Параллельность прямой и плоскостиСкачать
Выберите верные утверждения?
Выберите верные утверждения.
А) Прямая, не лежащая в данной плоскости и параллельная какой либо прямой на плоскости, параллельна самой плоскости.
Б) Плоскость, проходящая через одну из двух параллельных прямых, параллельна другой прямой.
В) Через точку, не принадлежащую плоскости, можно провести бесконечное число прямых, параллельных данной плоскости.
Г) Через одну из двух параллельных прямых можно провести плоскость, параллельную другой прямой, и только одну.
Д) Если две прямые параллельны одной плоскости, то они параллельны друг другу.
Видео:Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать
Плоскости параллельны?
Прямая а лежит на плоскости.
Верно ли, что прямая а параллельна любой прямой, лежащей в плоскости.
Видео:№49. Прямая m пересекает плоскость α в точке В. Существует ли плоскость, проходящая черезСкачать
Отметьте верные утверждения?
Отметьте верные утверждения.
1. Прямая параллельная плоскости, параллельна любой прямой, лежащей в этой плоскости.
2. Через одну из двух параллельных прямых можно провести бесконечное множество плоскостей, параллельных другой прямой.
3. Если прямая, лежащая в одной плоскости, параллельна прямой, лежащей в другой плоскости, то эти плоскости параллельны.
4. Если две плоскости параллельны одной и той же прямой, то они параллельны.
Видео:№25. Докажите, что если данная прямая параллельна прямой, по которой пересекаютсяСкачать
Докажите, что если плоскость проходит через прямую, параллельную другой прямой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна первой прямой?
Докажите, что если плоскость проходит через прямую, параллельную другой прямой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна первой прямой.
Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать
Одна из двух параллельных прямых параллельна некоторой плоскости?
Одна из двух параллельных прямых параллельна некоторой плоскости.
Верно ли утверждение, что и вторая прямая параллельна этой плоскости?
Видео:Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)Скачать
Две плоскости пересекаются по прямой а ?
Две плоскости пересекаются по прямой а .
Прямая b лежит в одной из плоскостей и не параллельна другой плоскости .
Параллельные ли прямые а и b.
Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать
Прямая а параллельна прямой б, б параллельна плоскости альфа?
Прямая а параллельна прямой б, б параллельна плоскости альфа.
Следует ли отсюда, что а параллельна плоскости альфа?
Видео:22. Взаимное расположение прямой и плоскости в пространствеСкачать
Выберете верное утверждение : а)если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая лежит в данной плоскости ; б)если плоскость альфа проходит через прямую, параллельн?
Выберете верное утверждение : а)если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая лежит в данной плоскости ; б)если плоскость альфа проходит через прямую, параллельную плоскости бета, то и плоскость альфа параллельна плоскости бета ; в)если две прямые пересекают плоскость, то они параллельны ; г)прямая и плоскость называется параллельными, если они не имеют общих точек.
Вопрос Прямая n параллельна прямой m параллельна плоскости а?, расположенный на этой странице сайта, относится к категории Геометрия и соответствует программе для 10 — 11 классов. Если ответ не удовлетворяет в полной мере, найдите с помощью автоматического поиска похожие вопросы, из этой же категории, или сформулируйте вопрос по-своему. Для этого ключевые фразы введите в строку поиска, нажав на кнопку, расположенную вверху страницы. Воспользуйтесь также подсказками посетителей, оставившими комментарии под вопросом.
Ответ : (x + 4)² + y² = 16Объяснение : Уравнение окружности с центром в точке О(х₀ ; у₀) и радиусом R имеет вид : (x — x₀)² + (y — y₀)² = R²По условию R = 4, значит точка А имеет координаты ( — 4 ; 0). Подставляем : (x — ( — 4))² + (y — 0)² = 4²(x +..
Только вместо 6 подставь свое значение 14 тр. AВD = тр. ADМ (по двум сторонам BD = DM, AD — общая, и глу между ними) АМ = АВ = 6см АС = 2АВ = 2 * 6 = 12 Ответ : 12.
Первый случай — расположение по разные стороны от прямой. Воспользуемся координатным методом. Координата нужна только одна, х, вторая, y, не важна и мы её просто не будем указывать S1(18), И1( — 8) Координата точки Щ1 найдётся как среднее арифметич..
Видео:№51. Докажите, что плоскости α и β параллельны, если две пересекающиеся прямые mСкачать
Параллельные прямая и плоскость, признак и условия параллельности прямой и плоскости
Статья рассматривает понятия параллельность прямой и плоскости. Будут рассмотрены основные определения и приведены примеры. Рассмотрим признак параллельности прямой к плоскости с необходимыми и достаточными условиями параллельности, подробно решим примеры заданий.
Видео:№92. Плоскость α и прямая a параллельны прямой b. Докажите, что прямая a либо параллельна плоскостиСкачать
Параллельные прямые и плоскость – основные сведения
Прямая и плоскость называются параллельными, если не имеют общих точек, то есть не пересекаются.
Параллельность обозначается « ∥ ». Если в задании по условию прямая a и плоскость α параллельны, тогда обозначение имеет вид a ∥ α . Рассмотрим рисунок, приведенный ниже.
Считается, что прямая a , параллельная плоскости α и плоскость α , параллельная прямой a , равнозначные, то есть прямая и плоскость параллельны друг другу в любом случае.
Видео:№124. Прямая PQ параллельна плоскости α. Через точки Р и Q проведены прямые, перпендикулярныеСкачать
Параллельность прямой и плоскости – признак и условия параллельности
Не всегда очевидно, что прямая и плоскость параллельны. Зачастую это нужно доказать. Необходимо использовать достаточное условие, которое даст гарантию на параллельность. Такой признак имеет название признака параллельности прямой и плоскости. Предварительно рекомендуется изучить определение параллельных прямых.
Если заданная прямая a , не лежащая в плоскости α , параллельна прямой b , которая принадлежит плоскости α , тогда прямая a параллельна плоскости α .
Рассмотрим теорему, используемую для установки параллельности прямой с плоскостью.
Если одна из двух параллельных прямых параллельна плоскости, то другая прямая лежит в этой плоскости либо параллельна ей.
Подробное доказательство рассмотрено в учебнике 10 — 11 класса по геометрии. Необходимым и достаточным условием параллельности прямой с плоскостью возможно при наличии определения направляющего вектора прямой и нормального вектора плоскости.
Для параллельности прямой a , не принадлежащей плоскости α , и данной плоскости необходимым и достаточным условием является перпендикулярность направляющего вектора прямой с нормальным вектором заданной плоскости.
Условие применимо, когда необходимо доказать параллельность в прямоугольной системе координат трехмерного пространства. Рассмотрим подробное доказательство.
Допустим, прямая а в систему координат О х у задается каноническими уравнениями прямой в пространстве , которые имеют вид x — x 1 a x = y — y 1 a y = z — z 1 a z или параметрическими уравнениями прямой в пространстве x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , плоскостью α с общими уравнениями плоскости A x + B y + C z + D = 0 .
Отсюда a → = ( a x , a y , a z ) является направляющим вектором с координатами прямой а, n → = ( A , B , C ) — нормальным вектором заданной плоскости альфа.
Чтобы доказать перпендикулярность n → = ( A , B , C ) и a → = ( a x , a y , a z ) , нужно использовать понятие скалярного произведения. То есть при произведении a → , n → = a x · A + a y · B + a z · C результат должен быть равен нулю из условия перпендикулярности векторов.
Значит, что необходимым и достаточным условием параллельности прямой и плоскости запишется так a → , n → = a x · A + a y · B + a z · C . Отсюда a → = ( a x , a y , a z ) является направляющим вектором прямой a с координатами, а n → = ( A , B , C ) — нормальным вектором плоскости α .
Определить, параллельны ли прямая x = 1 + 2 · λ y = — 2 + 3 · λ z = 2 — 4 · λ с плоскостью x + 6 y + 5 z + 4 = 0 .
Получаем, что предоставленная прямая не принадлежит плоскости, так как координаты прямой M ( 1 , — 2 , 2 ) не подходят. При подстановке получаем, что 1 + 6 · ( — 2 ) + 5 · 2 + 4 = 0 ⇔ 3 = 0 .
Необходимо проверить на выполнимость необходимое и достаточное условие параллельности прямой и плоскости. Получим, что координаты направляющего вектора прямой x = 1 + 2 · λ y = — 2 + 3 · λ z = 2 — 4 · λ имеют значения a → = ( 2 , 3 , — 4 ) .
Нормальным вектором для плоскости x + 6 y + 5 z + 4 = 0 считается n → = ( 1 , 6 , 5 ) . Перейдем к вычислению скалярного произведения векторов a → и n → . Получим, что a → , n → = 2 · 1 + 3 · 6 + ( — 4 ) · 5 = 0 .
Значит, перпендикулярность векторов a → и n → очевидна. Отсюда следует, что прямая с плоскостью являются параллельными.
Ответ: прямая с плоскостью параллельны.
Определить параллельность прямой А В в координатной плоскости О у z , когда даны координаты A ( 2 , 3 , 0 ) , B ( 4 , — 1 , — 7 ) .
По условию видно, что точка A ( 2 , 3 , 0 ) не лежит на оси О х , так как значение x не равно 0 .
Для плоскости O x z вектор с координатами i → = ( 1 , 0 , 0 ) считается нормальным вектором данной плоскости. Обозначим направляющий вектор прямой A B как A B → . Теперь при помощи координат начала и конца рассчитаем координаты вектора A B . Получим, что A B → = ( 2 , — 4 , — 7 ) . Необходимо выполнить проверку на выполнимость необходимого и достаточного условия векторов A B → = ( 2 , — 4 , — 7 ) и i → = ( 1 , 0 , 0 ) , чтобы определить их перпендикулярность.
Запишем A B → , i → = 2 · 1 + ( — 4 ) · 0 + ( — 7 ) · 0 = 2 ≠ 0 .
Отсюда следует, что прямая А В с координатной плоскостью О y z не являются параллельными.
Ответ: не параллельны.
Не всегда заданное условие способствует легкому определению доказательства параллельности прямой и плоскости. Появляется необходимость в проверке принадлежности прямой a плоскости α . Существует еще одно достаточное условие, при помощи которого доказывается параллельность.
При заданной прямой a с помощью уравнения двух пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 , плоскостью α — общим уравнением плоскости A x + B y + C z + D = 0 .
Необходимым и достаточным условием для параллельности прямой a и плоскости α яляется отсутствие решений системы линейных уравнений, имеющей вид A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 .
Из определения следует, что прямая a с плоскостью α не должна иметь общих точек, то есть не пересекаться, только в этом случае они будут считаться параллельными. Значит, система координат О х у z не должна иметь точек, принадлежащих ей и удовлетворяющих всем уравнениям:
A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 , а также уравнению плоскости A x + B y + C z + D = 0 .
Следовательно, система уравнений, имеющая вид A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 , называется несовместной.
Верно обратное: при отсутствии решений системы A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 не существует точек в О х у z , удовлетворяющих всем заданным уравнениям одновременно. Получаем, что нет такой точки с координатами, которая могла бы сразу быть решениями всех уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 и уравнения A x + B y + C z + D = 0 . Значит, имеем параллельность прямой и плоскости, так как отсутствуют их точки пересечения.
Система уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 не имеет решения, когда ранг основной матрицы меньше ранга расширенной. Это проверяется теоремой Кронекера-Капелли для решения линейных уравнений. Можно применять метод Гаусса для определения ее несовместимости.
Доказать , что прямая x — 1 = y + 2 — 1 = z 3 параллельна плоскости 6 x — 5 y + 1 3 z — 2 3 = 0 .
Для решения данного примера следует переходить от канонического уравнения прямой к виду уравнения двух пересекающихся плоскостей. Запишем это так:
x — 1 = y + 2 — 1 = z 3 ⇔ — 1 · x = — 1 · ( y + 2 ) 3 · x = — 1 · z 3 · ( y + 2 ) = — 1 · z ⇔ x — y — 2 = 0 3 x + z = 0
Чтобы доказать параллельность заданной прямой x — y — 2 = 0 3 x + z = 0 с плоскостью 6 x — 5 y + 1 3 z — 2 3 = 0 , необходимо уравнения преобразовать в систему уравнений x — y — 2 = 0 3 x + z = 0 6 x — 5 y + 1 3 z — 2 3 = 0 .
Видим, что она не решаема, значит прибегнем к методу Гаусса.
Расписав уравнения, получаем, что 1 — 1 0 2 3 0 1 0 6 — 5 1 3 2 3
1 — 1 0 2 0 3 1 — 6 0 1 1 3 — 11 1 3
1 — 1 0 2 0 3 1 — 6 0 0 0 — 9 1 3 .
Отсюда делаем вывод, что система уравнений является несовместной, так как прямая и плоскость не пересекаются, то есть не имеют общих точек.
Делаем вывод, что прямая x — 1 = y + 2 — 1 = z 3 и плоскость 6 x — 5 y + 1 3 z — 2 3 = 0 параллельны, так как было выполнено необходимое и достаточное условие для параллельности плоскости с заданной прямой.
Ответ: прямая и плоскость параллельны.
🎥 Видео
Построение параллельной плоскости на расстояние 30 мм.Скачать
Параллельные прямые | Математика | TutorOnlineСкачать
Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
№95. Прямая а параллельна плоскости α. Докажите, что если плоскость β пересекает прямую а, то онаСкачать
Математика без Ху!ни. Уравнение плоскости.Скачать