Критерий коллинеарности векторов доказательство

Коллинеарность векторов, условия коллинеарности векторов.

Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами (рис. 1).

Критерий коллинеарности векторов доказательство
рис. 1

Видео:Коллинеарные векторы.Скачать

Коллинеарные векторы.

Условия коллинеарности векторов

Два вектора будут коллинеарны при выполнении любого из этих условий:

Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что

N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.

N.B. Условие 3 применимо только для трехмерных (пространственных) задач.

Доказательство третего условия коллинеарности

Пусть есть два коллинеарные вектора a = < ax ; ay ; az > и b = < nax ; nay ; naz >. Найдем их векторное произведение

Видео:Коллинеарность векторовСкачать

Коллинеарность векторов

Примеры задач на коллинеарность векторов

Примеры задач на коллинеарность векторов на плоскости

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:

ax=ay.
bxby
Вектора a и b коллинеарны т.к.1=2.
48
Вектора a и с не коллинеарны т.к.12.
59
Вектора с и b не коллинеарны т.к.59.
48

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то

n =by=6= 2
ay3

Найдем значение n a :

Так как b = n a , то вектора a и b коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

ax=ay.
bxby
3=2.
9n

Решим это уравнение:

n =2 · 9= 6
3

Ответ: вектора a и b коллинеарны при n = 6.

Примеры задач на коллинеарность векторов в пространстве

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае пространственной задачи для векторов a и b примет вид:

ax=ay=az.
bxbybz

Вектора a и b коллинеарны т.к. 1 4 = 2 8 = 3 12

Вектора a и с не коллинеарны т.к. 1 5 = 2 10 ≠ 3 12

Вектора с и b не коллинеарны т.к. 5 4 = 10 8 ≠ 12 12

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то

n =by=6= 2
ay3

Найдем значение n a :

Так как b = n a , то вектора a и b коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

ax=ay=az.
bxbybz
3=2=m
9n12

Из этого соотношения получим два уравнения:

3=2
9n
3=m
912

Решим эти уравнения:

n =2 · 9= 6
3
m =3 · 12= 4
9

Ответ: вектора a и b коллинеарны при n = 6 и m = 4.

Видео:Критерий коллинеарности векторовСкачать

Критерий коллинеарности векторов

Условие коллинеарности векторов

В статье ниже рассмотрим условия, при которых векторы считаются коллинеарными, а также разберем тему на конкретных примерах. И, прежде чем приступить к обсуждению, напомним некоторые определения.

Коллинеарные векторы – ненулевые векторы, лежащие на одной прямой или на параллельных прямых. Нулевой вектор считается коллинеарным любому другому.

Данное определение дает возможность убедиться в коллинеарности векторов в их геометрическом отображении, однако точность такого способа может иметь погрешности, например, в зависимости, от качества самого чертежа. Поэтому обратимся к алгебраическому толкованию: сформируем условие, которое будет явным признаком коллинеарности.

Согласно схемам операций над векторами умножение вектора на некоторое заданное число приводит к соответствующему сжатию или растяжению вектора при сохранении или смене направления. Тогда вектор b → = λ · a → коллинеарен вектору a → , где λ – некоторое действительное число. Справедливым будет и обратное утверждение: если вектор b → коллинеарен вектору a → , его можно представить в виде λ · a → . Это является необходимым и достаточным условием коллинеарности двух ненулевых векторов.

Для коллинеарности двух векторов необходимо и достаточно, чтобы они были связаны равенствами: b → = λ · a → или a → = μ · b → , μ ∈ R

Видео:Геометрия. 9 класс. Условие коллинеарности векторов /15.09.2020/Скачать

Геометрия. 9 класс. Условие коллинеарности векторов /15.09.2020/

Координатная форма условия коллинеарности векторов

Исходные данные: вектор a → задан в некоторой прямоугольной системе координат на плоскости и имеет координаты ( a x , a y ) , тогда, согласно полученному выше условию, вектор b → = λ · a → имеет координаты ( λ · a x , λ · a y ) .

По аналогии: если вектор a → задан в трехмерном пространстве, то он будет представлен в виде координат a = ( a x , a y , a z ) , а вектор b → = λ · a → имеет координаты ( λ · a x , λ · a y , λ · a z ) . Из полученных утверждений следуют условия коллинеарности двух векторов в координатном толковании.

  1. ​​​Для коллинеарности двух ненулевых векторов на плоскости необходимо и достаточно, чтобы их координаты были связаны соотношениями: b x = λ · a x b y = λ · a y или a x = μ · b x a y = μ · b y
  2. Для коллинеарности двух ненулевых векторов в пространстве необходимо и достаточно, чтобы их координаты были связаны соотношениями: b x = λ · a x b y = λ · a y b z = λ · a z или a x = μ · b x a y = μ · b y a z = μ · b z

Мы можем также получить еще одно условие коллинеарности векторов, опираясь на понятие их произведения.

Если ненулевые векторы a → = ( a x , a y , a z ) и b → = ( b x , b y , b z ) коллинеарны, то согласно векторному определению произведения a → × b → = 0 → . И это также соответствует равенству: i → j → k → a x a y a z b x b y b z = 0 → , что, в свою очередь, возможно только тогда, когда заданные векторы связаны соотношениями b → = λ · a → и a → = μ · b → , где μ — произвольное действительное число (на основании теоремы о ранге матрицы), что указывает на факт коллинеарности векторов.

Два ненулевых вектора коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору.

Рассмотрим применение условия коллинеарности на конкретных примерах.

Исходные данные: векторы a → = ( 3 — 2 2 , 1 ) и b → = ( 1 2 + 1 , 2 + 1 ) . Необходимо определить, коллинеарны ли они.

Решение

Выполним задачу, опираясь на условие коллинеарности векторов на плоскости в координатах: b x = λ · a x b y = λ · a y Подставив заданные значения координат, получим: b x = λ · a x ⇔ 1 2 + 1 = λ · ( 3 — 2 2 ) ⇒ λ = 1 ( 2 + 1 ) · ( 3 — 2 2 ) = 1 3 2 — 4 + 3 — 2 2 = 1 2 — 1 b y = λ · a y ⇔ 2 + 1 = 1 2 — 1 · 1 ⇔ ( 2 + 1 ) · ( 2 — 1 ) = 1 ⇔ 1 ≡ 1

Т.е. b → = 1 2 — 1 · a → , следовательно, заданные векторы коллинеарны.

Ответ: заданные векторы коллинеарны.

Исходные данные: векторы a → = ( 1 , 0 , — 2 ) и b → = ( — 3 , 0 , 6 ) . Необходимо убедиться в их коллинеарности.

Решение

Т.к. b x = λ · a x b y = λ · a y b z = λ · a z ⇔ — 3 = — 3 · 1 0 = — 3 · 0 6 = — 3 · ( — 2 ) , то верным будет равенство: b → = — 3 · a → , что является необходимым и достаточным условием коллинеарности. Таким образом, заданные векторы коллинеарны.

Найдем также векторное произведение заданных векторов и убедимся, что оно равно нулевому вектору: a → × b → = i → j → k → a x a y a z b x b y b z = i → j → k → 1 0 — 2 — 3 0 6 = i → · 0 · 6 + j → · ( — 2 ) · ( — 3 ) + k → · 1 · 0 — k → · 0 · ( — 3 ) — j → · 1 · 6 — i → · ( — 2 ) · 0 = 0 → Ответ: заданные векторы коллинеарны.

Исходные данные: векторы a → = ( 2 , 7 ) и b → = ( p , 3 ) . Необходимо определить, при каком значении p заданные векторы будут коллинеарны.

Решение

Согласно выведенному выше условию, векторы коллинеарны, если

b → = λ · a → ⇔ b x = λ · a x b y = λ · a y ⇔ p = λ · 2 3 = λ · 7

тогда λ = 3 7 , а p = λ · 2 ⇔ p = 6 7 .

Ответ: при p = 6 7 заданные векторы коллинеарны.

Также распространены задачи на нахождения вектора, коллинеарного заданному. Решаются они без затруднений, основываясь на условии коллинеарности: : достаточным будет взять произвольное действительное число λ и определить вектор, коллинеарный данному.

Исходные данные: вектор a → = ( 2 , — 6 ) . Необходимо найти любой ненулевой вектор, коллинеарный заданному.

Решение

Ответом может послужить, например, 1 2 · a → = ( 1 , — 3 ) или вектор 3 · a → = ( 6 , — 18 ) .

Ответ: вектор, коллинеарный заданному имеет координаты ( 1 , — 3 ) .

Исходные данные: вектор a → = ( 3 , 4 , — 5 ) . Необходимо определить координаты вектора единичной длины, коллинеарного заданному.

Решение

Вычислим длину заданного вектора по его координатам: a → = a x 2 + b x 2 + c x 2 = 3 2 + 4 2 + ( — 5 ) 2 = 5 2 Разделим каждую из заданных координат на полученную длину и получим единичный вектор, коллинеарный данному: 1 a → · a → = ( 3 5 2 , 4 5 2 , — 1 2 )

Видео:Собственные векторы и собственные числа линейного оператораСкачать

Собственные векторы и собственные числа линейного оператора

Коллинеарные векторы — условия, признаки и примеры

Критерий коллинеарности векторов доказательство

Видео:Два критерия коллинеарности и один критерий компланарности векторов.Скачать

Два критерия коллинеарности и один критерий компланарности векторов.

Общие сведения

Вектором называют направленный отрезок, который имеет начало и конец. Обозначают его либо большими буквами, либо маленькими, например, АБ или a. Над буквой ставится знак вектора — стрелка. Любой отрезок характеризуется длиной, которую называют модулем. Если начало и конец прямой совпадают, то такой вектор носит название нулевой и обозначается в виде точки. При этом его модуль будет равняться нулю.

Для равенства векторов необходимо выполнение двух условий:

  • модули отрезков должны быть равны;
  • сравниваемые отрезки должны быть направлены в одну сторону.

Критерий коллинеарности векторов доказательство

Равные вектора могут быть совмещены параллельным переносом, при этом начало и конец отрезков должны совпадать. Если ограниченные линии не являются равными, но лежат на параллельных прямых, то их называют коллинеарными, то есть, по определению коллинеарных векторов, их направление для определения признака не является важным.

Коллинеарность является одним из признаков сонаправленности, но для выполнения последнего они должны ещё и совпадать по направлению. Наглядным понятием, объясняющим сонаправленность, является прямое движение транспорта или пешехода. Например, если рассматривать две траектории движения как векторы АБ и СД, лежащие на плоскости, при этом их лучи лежат в одной полуплоскости и перпендикулярны её границам, то их можно назвать сонаправленными.

Поэтому параллельные отрезки будут направлены в одну сторону лишь тогда, когда их лучи находятся по одну сторону от прямой, соединяющей их начала. При этом если векторы коллинеарны, но не сонаправлены, то они будут являться противоположными.

Критерий коллинеарности векторов доказательство

С векторами можно выполнять любые простейшие арифметические операции. При сложении используют правила параллелограмма и треугольника. Пусть есть два отрезка, имеющие общее начало. Для того чтобы найти их сумму, необходимо фигуру достроить до параллелограмма. Диагональ этой фигуры и будет искомой величиной. Когда же конец одного отрезка является началом другого, то, соединив свободные точки, можно получить треугольник. Новая прямая и будет являться вектором суммы. Следует отметить, что эти правила равнозначны друг другу. Вычитание отрезков находится аналогично.

Вектор можно и умножить на число, то есть длина отрезка увеличивается на значение множителя. Если в произведении стоит отрицательное число, то характеристика меняет направление.

Видео:§15 Коллинеарность векторовСкачать

§15 Коллинеарность векторов

Критерии коллинеарности

Теорема критерия коллинеарности представляет собой утверждение, которое сообщает, что если есть два не ортогональных отрезка, одинаковых по длине, a и b, то вектор a может быть выражен через формулу a || b = a = y * b. При этом y обозначает любое произвольное число. Есть и обратное утверждение: если вектор b умножить на число и получится отрезок a, то тогда a и b будут коллинеарными.

Эти два правила тождественны и называются критериями коллинеарности. Для их доказательства нужно знать правило арифметических действий с параллельными и перпендикулярными векторами, а также понимать основной базис. Заключается он в том, что если имеются три отрезка a, b и c, при этом верной является следующая комбинация a || b и a || c, то справедливо утверждать, что b || c.

Критерий коллинеарности векторов доказательство

Для того чтобы доказать свойство a || b = a = y * b, нужно воспользоваться определением коллинеарности. Из него следует, что если a || b, то отрезки могут быть сонаправлены или противоположно направлены. Таким образом, необходимо проверить утверждение для двух случаев:

Если предположения окажутся верными, то можно будет сделать вывод о справедливости записи для других случаев. То есть к любым параллельным отрезкам можно применить равенство a = u * b. Этот критерий занимает важное место в геометрии наряду со свойствами перпендикулярности (ортогональности) прямых.

Сонаправленные вектора

Пусть a и b однонаправленные. Введём число y, равное отношению a на b. Так как длина вектора может быть только положительной, то и y = a /b > 0. Состояние вектора, когда он нулевой, является частным случаем и его можно не рассматривать, так как при этом получится равенство 0 = 0. Если длину b умножить на число, то получится новый вектор. Пусть это будет отрезок c, то есть с = y * b. Учитывая свойство коллинеарности, можно утверждать, что между c и b останется параллельность.

Критерий коллинеарности векторов доказательство

По условию известно, что a || b. Исходя из транзитивности отрезков, можно заключить, что и c || b. Теперь необходимо установить их направление. Изначально a и b направлены в одну сторону. Ведённый множитель больше нуля. Это значит, что после умножения направление вектора не изменится, то есть c будет иметь то же направление что и b. Тогда получается, что a || b и c || b. Отсюда следует, что a || с.

Длина вектора c равняется |c| = |u| * |b|. Вместо u можно подставить a / b. В итоге получится |a| * |b| / |b| = |a|. Таким образом, два условия выполняются, и можно утверждать, что с = a. Получается, что для двух любых однонаправленных векторов будет выполняться правило a = u * b.

Противоположные отрезки

Пусть имеется два отрезка a и b, при этом их направления противоположны друг другу. Можно ввести переменную u, которая будет меньше нуля. Тогда справедливо записать u = — |a| / |b| 0, так как |m| ↑↑ |n|. Отсюда u = 240 / 12 = 20.

  • Требуется доказать, что если отрезки a и b не коллинеарны, то a + b и a — b не коллинеарны тоже. Такие задачи решаются методом от обратного. Для повышения комфортности решения рекомендуется выполнить векторный рисунок в линейных координатах. Делают предположение, что a + b и a — b коллинеарны. Тогда должно выполняться следующее равенство: a + b = u (a — b). При этом u не должно равняться нулю. В выражении можно раскрыть скобки: a + b = u * a — u * b, а затем перенести в левую часть равенства одночлены, содержащие вектор a, а в правую часть — b: a — u * a = — u * b — b. Используя законы умножения, выражение можно преобразовать до вида: (1-u) * a = (-u — 1) * b. После ряда стандартных упрощений получится: a = (-u — 1) * b / 1- u, a b = (u + 1) * b / 1- u. Изучив полученное выражение, можно отметить, что u = 1 противоречит условию, так как a + b = a — b, то b = -b = 0.
  • Установить, являются ли отрезки с1 и с2 коллинеарными по векторам a и b при условии a = , b = ; c 1 = a + b, c 2 = 4 a +2 b. Решение выполняют следующим образом. Если векторы коллинеарны, то будет существовать такое число, при котором будет верным равенство: c 1 = u * c 2. Иными словами, векторы коллинеарны если их координаты пропорциональны. Используя исходные данные, получим: c 1 = a + b = = ; c 2 = 4 * a + 2 * b = = . В результате: 2/6 ≠ 5/18 ≠ -3/-10. Отсюда можно сделать вывод, что рассматриваемые отрезки не коллинеарны.
  • Видео:Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать

    Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?

    Использование онлайн-калькулятора

    Решение простых заданий из школьного курса обычно не вызывает сложностей. Но на практике приходится сталкиваться со сложными выражениями. Для их вычисления нужно проявить усидчивость и при этом быть предельно внимательным. Кроме этого, расчёт занимает довольно много времени, а любая, казалось бы, незначительная оплошность, приведёт к неправильному решению.

    Критерий коллинеарности векторов доказательство

    Поэтому условие коллинеарности векторов удобно проверять на так называемых онлайн-калькуляторах. Это обычно мощные сервисы, основная деятельность которых заключается в предоставлении услуг по автоматизации вычислений. Среди них попадаются и сайты, умеющие вычислять и вектора.

    Для того чтобы выполнить на них математические операции, необходимо иметь доступ к интернету и установленный веб-обозреватель. Всё, что требуется от пользователя, это просто зайти на сайт и выбрать раздел, связанный с операциями над векторами. Затем в предложенную форму вести условие задания и запустить расчёт нажатием одной кнопки.

    Из множества онлайн-расчётчиков, доступных в секторе рунета, можно выделить следующие:

    Критерий коллинеарности векторов доказательство

    • SolverBook — это простой на вид сайт, содержащий на своей странице приложение, позволяющее выполнять любые действия над отрезками, а также определять их вид. Кроме непосредственного предоставления ответа, сервис выдаёт пошаговое решение. При этом каждый этап будет детально расписан.
    • O nlineMSchool — сайт помогает найти коллинеарные отрезки для любой сложности примеров. На страницах сервиса находится вся необходимая теория и примеры решения заданий. Поэтому даже слабо подготовленный пользователь сможет разобраться во всех нюансах решения нужных ему задач.
    • Kontrolnaya-rabota — отличительной его чертой является возможность отправления подробного решения на указанную электронную почту. Сайт умеет работать как с парой векторов, так и попарной системой.

    Все указанные сервисы предоставляют доступ к услугам бесплатно и без регистрации. Воспользовавшись онлайн-калькуляторами, даже слабо подготовленный пользователь научится самостоятельно определять коллинеарность. Такие расчётчики будут полезны и учащимся, и инженерам.

    💡 Видео

    Векторы и действия над ними, проекция вектора на координатные оси. Практическая часть. 9 класс.Скачать

    Векторы и действия над ними, проекция вектора на координатные оси. Практическая часть.  9 класс.

    Линейная зависимость и линейная независимость. ТемаСкачать

    Линейная зависимость и линейная независимость. Тема

    10 класс, 43 урок, Компланарные векторыСкачать

    10 класс, 43 урок, Компланарные векторы

    2 42 Ортогональность векторовСкачать

    2 42 Ортогональность векторов

    Понятие вектора. Коллинеарные вектора. 9 класс.Скачать

    Понятие вектора. Коллинеарные вектора. 9 класс.

    Задача 2. Коллинеарны ли векторы с1 и с2, построенные по векторам a и b?Скачать

    Задача 2. Коллинеарны ли векторы с1 и с2, построенные по векторам a и b?

    18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

    18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

    Коллинеарность векторовСкачать

    Коллинеарность векторов

    Критерий коллинеарности векторов геометрия 9 класс Тимергазина Л АСкачать

    Критерий коллинеарности векторов  геометрия 9 класс Тимергазина Л А

    ГЕОМЕТРИЯ 11 класс: Компланарные векторыСкачать

    ГЕОМЕТРИЯ 11  класс: Компланарные векторы

    Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

    Вектор. Сложение и вычитание. 9 класс | Математика

    Урок 6. Векторы. Коллинеарные векторы. Условие коллинеарности векторов. Геометрия 9 класс.Скачать

    Урок 6. Векторы. Коллинеарные векторы. Условие коллинеарности векторов. Геометрия 9 класс.
    Поделиться или сохранить к себе: