Какие вектора образуют базис в r3

Задача 40802 доказать,что векторы образуют базис.

Условие

Какие вектора образуют базис в r3

доказать,что векторы образуют базис пространства Какие вектора образуют базис в r3

Решение

Какие вектора образуют базис в r3

Стандартный базис в пространстве R^(3) имеет вид .
Чтобы доказать,что векторы a_(1);a_(2);a_(3) образуют базис, достаточно показать, что они линейно независимы.

Составляем их линейную комбинацию

[m]Delta =begin 2 & 2 &-1 \ 2 &-1 & 2\ -1 &2 & 2 end=-4-4-4+1-8-8neq 0[/m]

Система имеет единственное нулевое решение
α_(1)=α_(2)=α_(3)=0

Значит векторы линейно независимы и образуют базис

=(2 β β _(1)+2 β _(2)- β _(3))*x^2+(2 β _(1)- β _(2)+2 β _(3))*x+(- β _(1)+2 β _(2)+2 β _(3))

По условию
b=x^2+x+1

Решаем систему методом Крамера

[m]Delta =begin 2 & 2 &-1 \ 2 &-1 & 2\- 1 &2 & 2 end=-4-4-4+1-8-8=-27[/m]

[m]Delta_=begin 1 & 2 &-1 \ 1 &-1 & 2\ 1 &2 & 2 end=-2+4-2-1-4-4=-9[/m]

[m]Delta_ =begin 2 & 1 &-1 \ 2 &1 & 2\ -1 &1 & 2 end=4-2-2-1-4-4=-9[/m]

[m]Delta_ =begin 2 & 2 &1 \ 2 &-1 & 1\ -1 &2 & 1 end=-2-2+4-1-1-4=-9[/m]

Видео:Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Доказать, что 3 вектора образуют базис трёхмерного пространства и найти координаты 4-го вектора в данном базисе

Даны векторы Какие вектора образуют базис в r3. Показать, что векторы Какие вектора образуют базис в r3образуют базис трехмерного пространства и найти координаты вектора Какие вектора образуют базис в r3в этом базисе.

Решение: Сначала разбираемся с условием. По условию даны четыре вектора, и, как видите, у них уже есть координаты в некотором базисе. Какой это базис – нас не интересует. А интересует следующая вещь: три вектора Какие вектора образуют базис в r3вполне могут образовывать новый базис. И первый этап полностью совпадает с решением Примера 6, необходимо проверить, действительно ли векторы Какие вектора образуют базис в r3линейно независимы:

Вычислим определитель, составленный из координат векторов Какие вектора образуют базис в r3:
Какие вектора образуют базис в r3
Какие вектора образуют базис в r3, значит, векторы Какие вектора образуют базис в r3линейно независимы и образуют базис трехмерного пространства.

! Важно: координаты векторов Какие вектора образуют базис в r3обязательно записываем в столбцыопределителя, а не в строки. Иначе будет путаница в дальнейшем алгоритме решения.

Теперь вспомним теоретическую часть: если векторы Какие вектора образуют базис в r3образуют базис, то любой вектор Какие вектора образуют базис в r3можно единственным способом разложить по данному базису: Какие вектора образуют базис в r3, где Какие вектора образуют базис в r3– координаты вектора в базисе Какие вектора образуют базис в r3.

Поскольку наши векторы Какие вектора образуют базис в r3образуют базис трёхмерного пространства (это уже доказано), то вектор Какие вектора образуют базис в r3можно единственным образом разложить по данному базису:
Какие вектора образуют базис в r3, где Какие вектора образуют базис в r3– координаты вектора Какие вектора образуют базис в r3в базисе Какие вектора образуют базис в r3.

По условию и требуется найти координаты Какие вектора образуют базис в r3.

Для удобства объяснения поменяю части местами: Какие вектора образуют базис в r3. В целях нахождения Какие вектора образуют базис в r3следует расписать данное равенство покоординатно:
Какие вектора образуют базис в r3

По какому принципу расставлены коэффициенты? Все коэффициенты левой части в точности перенесены из определителя Какие вектора образуют базис в r3, в правую часть записаны координаты вектора Какие вектора образуют базис в r3.

Получилась система трёх линейных уравнений с тремя неизвестными. Обычно её решают поформулам Крамера, часто даже в условии задачи есть такое требование.

Главный определитель системы уже найден:
Какие вектора образуют базис в r3, значит, система имеет единственное решение.

Дальнейшее – дело техники:
Какие вектора образуют базис в r3

Таким образом:
Какие вектора образуют базис в r3– разложение вектора Какие вектора образуют базис в r3по базису Какие вектора образуют базис в r3.

Ответ: Какие вектора образуют базис в r3

Как я уже отмечал, задача носит алгебраический характер. Векторы, которые были рассмотрены – это не обязательно те векторы, которые можно нарисовать в пространстве, а, в первую очередь, абстрактные векторы курса линейной алгебры. Для случая двумерных векторов можно сформулировать и решить аналогичную задачу, решение будет намного проще. Однако на практике мне такое задание ни разу не встречалось, именно поэтому я его пропустил в предыдущем разделе.

Такая же задача с трёхмерными векторами для самостоятельного решения:

Даны векторы Какие вектора образуют базис в r3. Показать, что векторы Какие вектора образуют базис в r3образуют базис и найти координаты вектора Какие вектора образуют базис в r3в этом базисе. Систему линейных уравнений решить методом Крамера.

Полное решение и примерный образец чистового оформления в конце урока.

Аналогично можно рассмотреть четырёхмерное, пятимерное и т.д. векторные пространства, где у векторов соответственно 4, 5 и более координат. Для данных векторных пространств тоже существует понятие линейной зависимости, линейной независимости векторов, существует базис, в том числе, ортонормированный, разложение вектора по базису. Да, такие пространства невозможно нарисовать геометрически, но в них работают все правила, свойства и теоремы двух и трех мерных случаев – чистая алгебра. Собственно, о философских вопросах меня уже пробивало поговорить в статье Частные производные функции трёх переменных, которая появилась раньше данного урока.

Любите векторы, и векторы полюбят вас!

Решения и ответы:

Пример 2: Решение: составим пропорцию из соответствующих координат векторов:
Какие вектора образуют базис в r3
Ответ: при Какие вектора образуют базис в r3

Пример 4: Доказательство: Трапецией называется четырёхугольник, у которого две стороны параллельны, а две другие стороны не параллельны.
1) Проверим параллельность противоположных сторон Какие вектора образуют базис в r3и Какие вектора образуют базис в r3.
Найдём векторы:
Какие вектора образуют базис в r3
Вычислим определитель, составленный из координат векторов Какие вектора образуют базис в r3:
Какие вектора образуют базис в r3, значит, данные векторы не коллинеарны, и стороны Какие вектора образуют базис в r3не параллельны.
2) Проверим параллельность противоположных сторон Какие вектора образуют базис в r3и Какие вектора образуют базис в r3.
Найдём векторы:
Какие вектора образуют базис в r3
Вычислим определитель, составленный из координат векторов Какие вектора образуют базис в r3:
Какие вектора образуют базис в r3, значит, данные векторы коллинеарны, и Какие вектора образуют базис в r3.
Вывод: Две стороны четырёхугольника Какие вектора образуют базис в r3параллельны, а две другие стороны не параллельны, значит, он является трапецией по определению. Что и требовалось доказать.

Пример 5: Решение:
б) Проверим, существует ли коэффициент пропорциональности для соответствующих координат векторов:
Какие вектора образуют базис в r3
Система не имеет решения, значит, векторы Какие вектора образуют базис в r3не коллинеарны.
Более простое оформление:
Какие вектора образуют базис в r3– вторая и третья координаты не пропорциональны, значит, векторы Какие вектора образуют базис в r3не коллинеарны.
Ответ: векторы Какие вектора образуют базис в r3не коллинеарны.
в) Исследуем на коллинеарность векторы Какие вектора образуют базис в r3. Составим систему:
Какие вектора образуют базис в r3
Соответствующие координаты векторов пропорциональны, значит Какие вектора образуют базис в r3
Вот здесь как раз не проходит «пижонский» метод оформления.
Ответ: Какие вектора образуют базис в r3

Пример 6: Решение: б) Вычислим определитель, составленный из координат векторов Какие вектора образуют базис в r3(определитель раскрыт по первой строке):
Какие вектора образуют базис в r3
Какие вектора образуют базис в r3, значит, векторы Какие вектора образуют базис в r3линейно зависимы и не образуют базиса трёхмерного пространства.
Ответ: данные векторы не образуют базиса

Пример 9:Решение:Вычислим определитель, составленный из координат векторов Какие вектора образуют базис в r3:
Какие вектора образуют базис в r3
Таким образом, векторы Какие вектора образуют базис в r3линейно независимы и образуют базис.
Представим вектор Какие вектора образуют базис в r3в виде линейной комбинации базисных векторов:
Какие вектора образуют базис в r3
Покоординатно:
Какие вектора образуют базис в r3
Систему решим по формулам Крамера:
Какие вектора образуют базис в r3, значит, система имеет единственное решение.
Какие вектора образуют базис в r3

Ответ: Векторы Какие вектора образуют базис в r3образуют базис, Какие вектора образуют базис в r3

Автор: Емелин Александр

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?

Векторное произведение векторов.
Смешанное произведение векторов

На данном уроке мы рассмотрим ещё две операции с векторами: векторное произведение векторов и смешанное произведение векторов. Ничего страшного, так иногда бывает, что для полного счастья, помимо скалярного произведения векторов, требуется ещё и ещё. Такая вот векторная наркомания. Может сложиться впечатление, что мы залезаем в дебри аналитической геометрии. Это не так. В данном разделе высшей математики вообще мало дров, разве что на Буратино хватит. На самом деле материал очень распространенный и простой – вряд ли сложнее, чем то же скалярное произведение, даже типовых задач поменьше будет. Главное в аналитической геометрии, как многие убедятся или уже убедились, НЕ ОШИБАТЬСЯ В ВЫЧИСЛЕНИЯХ. Повторяйте как заклинание, и будет вам счастье =)

Если векторы сверкают где-то далеко, как молнии на горизонте, не беда, начните с урокаВекторы для чайников, чтобы восстановить или вновь приобрести базовые знания о векторах. Более подготовленные читатели могут знакомиться с информацией выборочно, я постарался собрать максимально полную коллекцию примеров, которые часто встречаются в практических работах

Чем вас сразу порадовать? Когда я был маленьким, то умел жонглировать двумя и даже тремя шариками. Ловко получалось. Сейчас жонглировать не придётся вообще, поскольку мы будем рассматривать только пространственные векторы, а плоские векторы с двумя координатами останутся за бортом. Почему? Такими уж родились данные действия – векторное и смешанное произведение векторов определены и работают в трёхмерном пространстве. Уже проще!

Видео:Семинар 3 - Задача 3 (Какие из векторов образуют базис?)Скачать

Семинар 3 - Задача 3 (Какие из векторов образуют базис?)

Как найти координаты вектора в базисе

Решение:
Записываем матрицу перехода А:

и находим ее определитель
0
Видим, что ранг матрицы С равен трем. Из теоремы о базисном миноре векторы f1 , f2 , f3 линейно независимы, а поэтому могут быть приняты в качестве базиса пространства R 3 .
Находим обратную матрицу А -1 .
Транспонированная матрица:

Обратная матрица А -1

Находим координаты вектора х относительно нового базиса.

Пример №1 . Даны векторы a, b, c и d . Установить, что векторы a , b , c образуют базис, и найти координаты вектора d в этом базисе.
Решение:
Соотношение, записанное для векторов d = αa + βb + γc, справедливо для каждой из проекций:
α*1 + β*2 + γ*1 = 0
α*2 — β*2 — γ*2 = 3
α*1 + β*1 + γ0 = 1 т.е. получена алгебраическая система трёх уравнений с тремя неизвестными. Решение системы удобнее вычислять методом Крамера или методом обратной матрицы:
α = 1/2; β = 1/2; γ = -3/2
следовательно, и вектор d имеет разложение в базисе a, b, c :
d = 1/2a + 1/2b — 3/2c

Пример №2 . Даны векторы Какие вектора образуют базис в r3. Показать, что векторы Какие вектора образуют базис в r3образуют базис трехмерного пространства и найти координаты вектора Какие вектора образуют базис в r3в этом базисе:

Какие вектора образуют базис в r3

Какие вектора образуют базис в r3

Какие вектора образуют базис в r3

Пример №3 . Даны два линейных преобразования:
х’1 = a11x1 + a12x2 + a13x3, х»1 = b11x’1 + b12x’2 + b13x’3,
х’2 = a21x1 + a22x2 + a23x3, х»2 = b21x’1 + b22x’2 + b23x’3,
х’3 = a31x1 + a32x2 + a33x3, х»3 = b31x’1 + b32x’2 + b33x’3,
Средствами матричного исчисления найти преобразование, выражающее х»1, x»2, x»3 через х1, х2, х3.
х’1 = 4x1 + 3x2 + 5x3, х»1 = — x’1 + 3x’2 — 2x’3,
х’2 = 6x1 + 7x2 + x3, х»2 = — 4x’1 + x’2 + 2x’3,
х’3 = 9x1 + x2 + 8x3, х»3 = 3x’1 — 4x’2 + 5x’3,
Решение. Используя калькулятор, получаем:
Обозначим:

A =
435
671
918

B =
-13-2
-412
3-45

Тогда матричное уравнение запишется в виде: A·X = B.
Вычислим определитель матрицы А:
∆ = 4*(7*8 — 1*1) — 6*(3*8 — 1*5) + 9*(3*1 — 7*5) = -182
Определитель матрицы А равен detA=-182
Так как A невырожденная матрица, то существует обратная матрица A -1 . Умножим слева обе части уравнения на A -1 : A -1 ·A·X = A -1 ·B, тогда получим E·X = A -1 ·B, или X = A -1 ·B.
Найдем обратную матрицу A -1 .

A -1 = -1/182
55-19-32
-39-1326
-572310

Матрицу Х ищем по формуле:

X = A -1 ·B = -1/182
55-19-32
-39-1326
-572310
*
-13-2
-412
3-45
=
75 /182-1 46 /911 9 /13
-13 /141 2 /7-1
5 /1821 3 /91-1 2 /13

Пример №4 . В декартовой прямой системе координат даны вершины пирамиды A(3,0,-1), B(-1,-2,-4), C(-1,2,4), D(7,-3,1). Найдите:
а) длину ребра AB;
б) косинус угла между векторами AB и AC ;
в) уравнение ребра AB;
г) уравнение грани ABC;
д) уравнение высоты, опущенной из вершины D на грань ABC;
е) координаты векторов e 1= AB , e 2= AC , e 3= AD и докажите, что они образуют линейную независимую систему;
ж) координаты вектора MN , где M и N – середины ребер AD и DC соответственно;
з) разложение вектора MN по базису ( e 1, e 2, e 3)

Решение. Пункты (а-д) решаются через онлайн калькулятор.

Задание 1 . Разложить вектор d =(8;-5) по векторам a =(1;-2) и b =(2;3).
Решение. Векторы a и b образуют базис на плоскости, так как они не коллинеарны (Какие вектора образуют базис в r3, то есть соответствующие координаты этих векторов не пропорциональны).
Следовательно, вектор d = α a +β b , где α и β – коэффициенты, которые надо найти.
Таким образом, имеем равенство
8i-5j=α(i-2j)+β(2i+3j)=(α+2β)i+ (-2α+3β)j.
В координатной форме это равенство примет вид Какие вектора образуют базис в r3 Какие вектора образуют базис в r3
Решим полученную систему уравнений.

💡 Видео

Образуют ли данные векторы базисСкачать

Образуют ли данные векторы базис

Разложение вектора по векторам (базису). Аналитическая геометрия-1Скачать

Разложение вектора по векторам (базису). Аналитическая геометрия-1

Высшая математика. Линейные пространства. Векторы. БазисСкачать

Высшая математика. Линейные пространства. Векторы. Базис

Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Решение, показать, что векторы а, b, с образуют базис, и найти координаты вектора d пример 8Скачать

Решение, показать, что векторы а, b, с образуют базис, и найти координаты вектора d пример 8

Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

Решение, показать, что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 1Скачать

Решение, показать, что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 1

Разложение вектора по базису. 9 класс.Скачать

Разложение вектора по базису. 9 класс.

Решение, показать, что векторы а, b, с образуют базис, и найти координаты вектора d пример 6Скачать

Решение, показать, что векторы а, b, с образуют базис, и найти координаты вектора d пример 6

Решение, показать, что векторы а, b, с образуют базис, и найти координаты вектора d пример 7Скачать

Решение, показать, что векторы а, b, с образуют базис, и найти координаты вектора d пример 7

Базис. Разложение вектора по базису.Скачать

Базис. Разложение вектора по базису.

Решение, показать, что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 3Скачать

Решение, показать, что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 3

Решение, показать, что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 2Скачать

Решение, показать, что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 2

Решение, показать, что векторы а, b, с образуют базис, и найти координаты вектора d пример 4Скачать

Решение, показать, что векторы а, b, с образуют базис, и найти координаты вектора d пример 4

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.

Решение, убедиться что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 9Скачать

Решение, убедиться что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 9

Базис линейного пространства (01)Скачать

Базис линейного пространства (01)

Координаты в новом базисеСкачать

Координаты в новом базисе
Поделиться или сохранить к себе: