Какие углы могут быть в четырехугольнике

Четырехугольник — виды и свойства с примерами решения

Содержание:

Четырёхугольник — это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки — сторонами четырёхугольника.

Какие углы могут быть в четырехугольнике

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне — противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин — противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области — внутреннюю и внешнюю.

Какие углы могут быть в четырехугольнике

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Какие углы могут быть в четырехугольнике

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Какие углы могут быть в четырехугольнике

Содержание
  1. Внутренние и внешние углы четырехугольника
  2. Сумма внутренних углов выпуклого четырёхугольника
  3. Сумма внешних углов выпуклого четырёхугольника
  4. Параллелограмм
  5. Параллелограмм и его свойства
  6. Признаки параллелограмма
  7. Прямоугольник
  8. Признак прямоугольника
  9. Ромб и квадрат
  10. Свойства ромба
  11. Трапеция
  12. Средняя линия треугольника
  13. Средняя линия трапеции
  14. Координаты середины отрезка
  15. Теорема Пифагора
  16. Справочный материал по четырёхугольнику
  17. Пример №1
  18. Признаки параллелограмма
  19. Пример №2 (признак параллелограмма).
  20. Прямоугольник
  21. Пример №3 (признак прямоугольника).
  22. Ромб. Квадрат
  23. Пример №4 (признак ромба)
  24. Теорема Фалеса. Средняя линия треугольника
  25. Пример №5
  26. Пример №6
  27. Трапеция
  28. Пример №7 (свойство равнобедренной трапеции).
  29. Центральные и вписанные углы
  30. Пример №8
  31. Вписанные и описанные четырёхугольники
  32. Пример №9
  33. Пример №10
  34. Четырехугольник
  35. Определение четырехугольника
  36. Виды четырехугольников
  37. Обозначение четырехугольника
  38. Соседние вершины четырехугольника
  39. Смежные стороны четырехугольника
  40. Простой четырехугольник. Самопересекающийся четырехугольник
  41. Выпуклый четырехугольник
  42. Правильный четырехугольник
  43. Периметр четырехугольника
  44. Угол четырехугольника
  45. Внешний угол четырехугольника
  46. Диагональ четырехугольника
  47. Сумма углов четырехугольника
  48. Сумма внешних углов четырехугольника
  49. Сумма углов четырехугольника
  50. Свойства
  51. 💥 Видео

Видео:Виды четырёхугольниковСкачать

Виды четырёхугольников

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов Какие углы могут быть в четырехугольникеуглы Какие углы могут быть в четырехугольникеявляются внешними.

Какие углы могут быть в четырехугольнике

Каждый внутренний угол выпуклого четырёхугольника меньше Какие углы могут быть в четырехугольникеГрадусная мера внутреннего угла невыпуклого четырёхугольника может быть больше Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна Какие углы могут быть в четырехугольникеКакие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Какие углы могут быть в четырехугольникеДоказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны. Какие углы могут быть в четырехугольнике

Теорема 1. Противоположные стороны параллелограмма конгруэнтны. Какие углы могут быть в четырехугольнике

Теорема 2. Противоположные углы параллелограмма конгруэнтны. Какие углы могут быть в четырехугольнике

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна Какие углы могут быть в четырехугольникеКакие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам. Какие углы могут быть в четырехугольнике

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника. Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны. Какие углы могут быть в четырехугольнике

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Какие углы могут быть в четырехугольнике

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом. Какие углы могут быть в четырехугольнике

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если Какие углы могут быть в четырехугольникето параллелограмм Какие углы могут быть в четырехугольникеявляется ромбом.

Какие углы могут быть в четырехугольнике

Доказательство теоремы 1.

Дано: Какие углы могут быть в четырехугольникеромб.

Докажите, что Какие углы могут быть в четырехугольнике

Доказательство (словестное): По определению ромба Какие углы могут быть в четырехугольникеПри этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что Какие углы могут быть в четырехугольникеравнобедренный. Медиана Какие углы могут быть в четырехугольнике(так как Какие углы могут быть в четырехугольнике), является также и биссектрисой и высотой. Т.е. Какие углы могут быть в четырехугольникеТак как Какие углы могут быть в четырехугольникеявляется прямым углом, то Какие углы могут быть в четырехугольнике. Аналогичным образом можно доказать, что Какие углы могут быть в четырехугольнике

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Какие углы могут быть в четырехугольнике

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Какие углы могут быть в четырехугольнике

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны. Какие углы могут быть в четырехугольнике

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны. Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

План доказательства теоремы 2

Дано: Какие углы могут быть в четырехугольникеравнобедренная трапеция. Какие углы могут быть в четырехугольнике

Докажите: Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если Какие углы могут быть в четырехугольникетогда Какие углы могут быть в четырехугольникеЗапишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку Какие углы могут быть в четырехугольникепроведем параллельную прямую к прямой Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике Какие углы могут быть в четырехугольникечерез точку Какие углы могут быть в четырехугольнике— середину стороны Какие углы могут быть в четырехугольникепроведите прямую параллельную Какие углы могут быть в четырехугольникеКакая фигура получилась? Является ли Какие углы могут быть в четырехугольникетрапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Какие углы могут быть в четырехугольникеМожно ли утверждать, что Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

Доказательство. Пусть дан треугольник Какие углы могут быть в четырехугольникеи его средняя линия Какие углы могут быть в четырехугольникеПроведём через точку Какие углы могут быть в четырехугольникепрямую параллельную стороне Какие углы могут быть в четырехугольникеПо теореме Фалеса, она проходит через середину стороны Какие углы могут быть в четырехугольникет.е. совпадает со средней линией Какие углы могут быть в четырехугольникеТ.е. средняя линия Какие углы могут быть в четырехугольникепараллельна стороне Какие углы могут быть в четырехугольникеТеперь проведём среднюю линию Какие углы могут быть в четырехугольникеТ.к. Какие углы могут быть в четырехугольникето четырёхугольник Какие углы могут быть в четырехугольникеявляется параллелограммом. По свойству параллелограмма Какие углы могут быть в четырехугольникеПо теореме Фалеса Какие углы могут быть в четырехугольникеТогда Какие углы могут быть в четырехугольникеТеорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Какие углы могут быть в четырехугольнике

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Какие углы могут быть в четырехугольнике

Доказательство: Через точку Какие углы могут быть в четырехугольникеи точку Какие углы могут быть в четырехугольникесередину Какие углы могут быть в четырехугольникепроведём прямую и обозначим точку пересечения со стороной Какие углы могут быть в четырехугольникечерез Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке Какие углы могут быть в четырехугольникерадиусом 3 единицы. Вычислите значение выражения Какие углы могут быть в четырехугольникеЕсть ли связь между значением данного выражения и координатой точки Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

Координаты середины отрезка

1) Пусть на числовой оси заданы точки Какие углы могут быть в четырехугольникеи Какие углы могут быть в четырехугольникеи точка Какие углы могут быть в четырехугольникекоторая является серединой отрезка Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольникето Какие углы могут быть в четырехугольникеа отсюда следует, что Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

2) По теореме Фалеса, если точка Какие углы могут быть в четырехугольникеявляется серединой отрезка Какие углы могут быть в четырехугольникето на оси абсцисс точка Какие углы могут быть в четырехугольникеявляется соответственно координатой середины отрезка концы которого находятся в точках Какие углы могут быть в четырехугольникеи Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

3) Координаты середины отрезка Какие углы могут быть в четырехугольникес концами Какие углы могут быть в четырехугольникеи Какие углы могут быть в четырехугольникеточки Какие углы могут быть в четырехугольникенаходятся так:

Какие углы могут быть в четырехугольнике

Убедитесь, что данная формула верна в случае, если отрезок Какие углы могут быть в четырехугольникепараллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки Какие углы могут быть в четырехугольникекак показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Какие углы могут быть в четырехугольнике

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Какие углы могут быть в четырехугольнике

Шаг 4. На сторонах другого квадрата отметьте отрезки Какие углы могут быть в четырехугольникекак показано на рисунке и отрежьте четыре прямоугольных треугольника.

Какие углы могут быть в четырехугольнике

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Какие углы могут быть в четырехугольнике

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Какие углы могут быть в четырехугольнике

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах: Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если Какие углы могут быть в четырехугольникето, Какие углы могут быть в четырехугольнике— прямоугольный.

Какие углы могут быть в четырехугольнике

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа Какие углы могут быть в четырехугольникеявляются Пифагоровыми тройками, то и числа Какие углы могут быть в четырехугольникетакже являются Пифагоровыми тройками.

Видео:Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

Какие углы могут быть в четырехугольнике(рис. 1).

Точки А, В, С, D — вершины четырёхугольника, отрезки АВ, ВС, CD, DA — его стороны. Углы DAB, ABC, BCD, CDA — это углы четырёхугольника. Их также обозначают одной буквой — Какие углы могут быть в четырехугольникеКакие углы могут быть в четырехугольнике

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой. Какие углы могут быть в четырехугольнике

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA — неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ — соседние, а вершины А и С, Какие углы могут быть в четырехугольнике, стороны AD и ВС — противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD — диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б — невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Какие углы могут быть в четырехугольнике

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: Какие углы могут быть в четырехугольнике=40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В Какие углы могут быть в четырехугольнике+ CD (по неравенству треугольника). Тогда Какие углы могут быть в четырехугольнике. Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) Какие углы могут быть в четырехугольнике. Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Какие углы могут быть в четырехугольнике

Решение:

Какие углы могут быть в четырехугольнике(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично Какие углы могут быть в четырехугольнике(АВ CD, ВС-секущая), Какие углы могут быть в четырехугольнике(ВС || AD, CD — секущая), Какие углы могут быть в четырехугольнике(АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Какие углы могут быть в четырехугольнике

Доказательство. Какие углы могут быть в четырехугольникепо стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, Какие углы могут быть в четырехугольникекак внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.Какие углы могут быть в четырехугольнике

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник — параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник — параллелограмм.

Какие углы могут быть в четырехугольнике

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). Какие углы могут быть в четырехугольникепо трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Какие углы могут быть в четырехугольнике Какие углы могут быть в четырехугольникеУглы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие — параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD — не параллелограмм. Какие углы могут быть в четырехугольнике

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Какие углы могут быть в четырехугольнике

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). Какие углы могут быть в четырехугольникепо двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, Какие углы могут быть в четырехугольникекак внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Какие углы могут быть в четырехугольникеНо углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Какие углы могут быть в четырехугольнике

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. Какие углы могут быть в четырехугольникепо двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, Какие углы могут быть в четырехугольникекак вертикальные. Из равенства треугольников следует: ВС= AD и Какие углы могут быть в четырехугольникеНо углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник — параллелограмм.

Чтобы установить, что четырёхугольник — параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Какие углы могут быть в четырехугольнике

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и —у треугольники, можно разделить на виды. Прямоугольник — один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике. Какие углы могут быть в четырехугольнике

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник — частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Какие углы могут быть в четырехугольнике

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Какие углы могут быть в четырехугольникеМожно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что Какие углы могут быть в четырехугольнике. Какие углы могут быть в четырехугольникепо трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что Какие углы могут быть в четырехугольнике. Поскольку в параллелограмме противоположные углы равны, то: Какие углы могут быть в четырехугольнике. По свойству углов четырёхугольника, Какие углы могут быть в четырехугольнике

Следовательно, Какие углы могут быть в четырехугольнике: 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм — прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, — это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Какие углы могут быть в четырехугольнике

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма — ромб.

Какие углы могут быть в четырехугольнике

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Какие углы могут быть в четырехугольнике

Дано: ABCD — ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать: Какие углы могут быть в четырехугольнике

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому Какие углы могут быть в четырехугольнике. Какие углы могут быть в четырехугольнике

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Какие углы могут быть в четырехугольнике

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором Какие углы могут быть в четырехугольнике(рис. 96). Докажем, что ABCD— ромб. Какие углы могут быть в четырехугольникепо двум сторонами и углу между ними.

Какие углы могут быть в четырехугольнике

Так как ромб — это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, Какие углы могут быть в четырехугольникепо условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм — ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Какие углы могут быть в четырехугольнике

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник — это частные виды параллелограмма. Соотношение между видами параллелограммов показано на Какие углы могут быть в четырехугольнике

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

Какие углы могут быть в четырехугольнике

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Какие углы могут быть в четырехугольнике

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Какие углы могут быть в четырехугольнике

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки Какие углы могут быть в четырехугольникеи Какие углы могут быть в четырехугольникеПроведите с помощью чертёжного угольника и линейки через точки Какие углы могут быть в четырехугольникепараллельные прямые, которые пересекут сторону ВС этого угла в точках Какие углы могут быть в четырехугольникеПри помощи циркуля сравните длины отрезков Какие углы могут быть в четырехугольникеСделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано: Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

Доказать: Какие углы могут быть в четырехугольнике

Доказательство. Проведём через точки Какие углы могут быть в четырехугольникепрямые Какие углы могут быть в четырехугольникепараллельные ВС. Какие углы могут быть в четырехугольникепо стороне и прилежащим к ней углам. У них Какие углы могут быть в четырехугольникепо условию, Какие углы могут быть в четырехугольникекак соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что Какие углы могут быть в четырехугольникеи Какие углы могут быть в четырехугольникекак противоположные стороны параллелограммов Какие углы могут быть в четырехугольнике

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Какие углы могут быть в четырехугольнике

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Какие углы могут быть в четырехугольнике

Отложим на луче АС пять равных отрезков: АА,Какие углы могут быть в четырехугольникеПроведём прямую Какие углы могут быть в четырехугольнике. Через точки Какие углы могут быть в четырехугольникепроведём прямые, параллельные прямой Какие углы могут быть в четырехугольнике. По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN — средняя линия Какие углы могут быть в четырехугольнике, так как точки М и N — середины сторон АВ и ВС.

Какие углы могут быть в четырехугольнике

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: Какие углы могут быть в четырехугольнике(рис. 122), AD = BD, СЕ= BE.

Какие углы могут быть в четырехугольнике

Доказать: Какие углы могут быть в четырехугольнике

Доказательство. 1) Пусть DE- средняя линия Какие углы могут быть в четырехугольнике. Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: Какие углы могут быть в четырехугольнике. По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно, Какие углы могут быть в четырехугольнике

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Какие углы могут быть в четырехугольнике

Поэтому Какие углы могут быть в четырехугольнике. КР— средняя линия треугольника ADC. Поэтому КР || АС и Какие углы могут быть в четырехугольнике

Получаем: MN || АС и КР || АС, отсюда MN || КРКакие углы могут быть в четырехугольнике, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Какие углы могут быть в четырехугольнике

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами — параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие — АВ и CD — непараллельны. Такой четырёхугольник — трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Какие углы могут быть в четырехугольнике

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие — непараллельны.

Какие углы могут быть в четырехугольнике

Параллельные стороны трапеции называются её основаниями, а непараллельные — боковыми сторонами. На рисунке 144 AD и ВС — основания трапеции, АВ и CD — боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP — равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) — прямоугольная, поскольку Какие углы могут быть в четырехугольнике= 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF — средняя линия трапеции ABCD, так как точки Е и F — середины боковых сторон АВ и CD.

Какие углы могут быть в четырехугольнике

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD — трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать: Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. Какие углы могут быть в четырехугольникеno стороне и прилежащим к ней углам. У них CF = FD по условию, Какие углы могут быть в четырехугольникекак вертикальные, Какие углы могут быть в четырехугольникевнутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Какие углы могут быть в четырехугольнике

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и Какие углы могут быть в четырехугольникеравнобедренный. Поэтому Какие углы могут быть в четырехугольникесоответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Какие углы могут быть в четырехугольнике

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Какие углы могут быть в четырехугольнике

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом. Какие углы могут быть в четырехугольникеКакие углы могут быть в четырехугольнике

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: Какие углы могут быть в четырехугольнике— вписанный в окружность с центром О (рис. 188 — 190).

Доказать: Какие углы могут быть в четырехугольнике

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом Какие углы могут быть в четырехугольнике. По свойству внешнего угла треугольника, Какие углы могут быть в четырехугольникеКакие углы могут быть в четырехугольнике— равнобедренный (ОВ= OA = R). Поэтому Какие углы могут быть в четырехугольникеизмеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:Какие углы могут быть в четырехугольнике

Из доказанного в первом случае следует, что Какие углы могут быть в четырехугольникеизмеряется половиной дуги AD, a Какие углы могут быть в четырехугольнике— половиной дуги DC. Поэтому Какие углы могут быть в четырехугольникеизмеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда: Какие углы могут быть в четырехугольнике

Какие углы могут быть в четырехугольнике

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, — прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°. Какие углы могут быть в четырехугольнике

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). Какие углы могут быть в четырехугольникекак вписанные, опирающиеся на дугу АС (следствие 1). Поэтому Какие углы могут быть в четырехугольнике, так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно, Какие углы могут быть в четырехугольнике

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, Какие углы могут быть в четырехугольнике(рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около Какие углы могут быть в четырехугольнике(рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо: Какие углы могут быть в четырехугольнике

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность. Какие углы могут быть в четырехугольнике

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность — описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Какие углы могут быть в четырехугольнике

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Какие углы могут быть в четырехугольнике

Доказать: Какие углы могут быть в четырехугольнике

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует: Какие углы могут быть в четырехугольнике

Тогда Какие углы могут быть в четырехугольнике

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда Какие углы могут быть в четырехугольнике

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник — вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225). Какие углы могут быть в четырехугольнике

Докажем, что Какие углы могут быть в четырехугольнике. В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, Какие углы могут быть в четырехугольнике. По свойству равнобокой трапеции, Какие углы могут быть в четырехугольнике

Тогда Какие углы могут быть в четырехугольникеи, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Какие углы могут быть в четырехугольнике

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Какие углы могут быть в четырехугольнике

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения Какие углы могут быть в четырехугольникецентры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника Какие углы могут быть в четырехугольникевписанного в окружность. Действительно,

Какие углы могут быть в четырехугольнике

Следовательно, четырёхугольник Какие углы могут быть в четырехугольнике— вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Какие углы могут быть в четырехугольнике

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD — вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Какие углы могут быть в четырехугольнике

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.

Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:ЧЕТЫРЕХУГОЛЬНИК и его элементы. §1 геометрия 8 классСкачать

ЧЕТЫРЕХУГОЛЬНИК и его элементы. §1 геометрия 8 класс

Четырехугольник

Видео:Математика 5 класс (Урок№29 - Четырёхугольники.)Скачать

Математика 5 класс (Урок№29 - Четырёхугольники.)

Определение четырехугольника

Определение 1. Четырехугольник − это замкнутая ломаная линия, состоящая из четырех звеньев.

Определение 2. Четырехугольник − геометрическая фигура (многоугольник), состоящая из четырех точек, никакие три из которых не лежат на одной прямой и последовательно соединенные четырьмя отрезками, называемыми сторонами четырехугольника.

Объединение четырехугольника и ограниченной им части плоскости также называют четырехугольником.

Любой четырехугольник разделяет плоскость на две части, одна из которых называется внутренней областью четырехугольника, а другая внешней областью четырехугольника.

Видео:Найдите углы четырёхугольникаСкачать

Найдите углы четырёхугольника

Виды четырехугольников

Четырехугольники бывают следующих видов:

  • Параллелограмм − четырехугольник, у которого противоположные стороны попарно вправны и параллельны (Рис.1).
  • Трапеция − четырехугольник, у которого две противоположные стороны параллельны (Рис.2).
  • Прямоугольник − четырехугольник, у которого все углы прямые (Рис.3).
  • Ромб − четырехугольник, у которого все стороны равны (Рис.4).
  • Квадрат − четырехугольник, у которого все стороны равны и все углы прямые (Рис.5).
  • Дельтоид − четырехугольник, у которого есть две пары равных смежных сторон (Рис.6, Рис.6.1).
  • Антипараллелограмм (или контрпараллелограмм)− четырехугольник, у которого противоположные стороны равны но не параллельны (с самопересечением) (Рис.7).
Какие углы могут быть в четырехугольникеКакие углы могут быть в четырехугольникеКакие углы могут быть в четырехугольникеКакие углы могут быть в четырехугольникеКакие углы могут быть в четырехугольникеКакие углы могут быть в четырехугольникеКакие углы могут быть в четырехугольникеКакие углы могут быть в четырехугольнике

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Обозначение четырехугольника

Обозначают четырехугольник буквами, стоящих при его вершинах. Называют четырехугольник чередовав буквы при его вершинах по часовой стрелке или против часовой стрелки. Например, четырехугольник на рисунке 8 называют ( small A_1A_2A_3A_4 ) или ( small A_4A_3A_2A_1 ) (Рис.8).

Какие углы могут быть в четырехугольнике

Видео:3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Соседние вершины четырехугольника

Вершины четырехугольника называются соседними, если они являются концами одной из его сторон.

На рисунке 8 вершины ( small A_2 ) и ( small A_3 ) являются соседними, так как они являются концами стороны ( small A_2A_3. )

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Смежные стороны четырехугольника

Стороны четырехугольника называются смежными, если они имеют общую вершину.

На рисунке 8 стороны ( small A_2A_3 ) и ( small A_3A_4 ) являются смежными, так как они имеют общую вершину ( small A_3. )

Видео:КАК ИЗМЕРИТЬ УГЛЫ ЧЕТЫРЕХУГОЛЬНИКА ТРАНСПОРТИРОМ? Примеры | МАТЕМАТИКА 5 классСкачать

КАК ИЗМЕРИТЬ УГЛЫ ЧЕТЫРЕХУГОЛЬНИКА ТРАНСПОРТИРОМ?  Примеры | МАТЕМАТИКА 5 класс

Простой четырехугольник. Самопересекающийся четырехугольник

Четырехугольник называется простым, если его несмежные стороны не имеют общих точек (внутренних или концевых).

Какие углы могут быть в четырехугольникеКакие углы могут быть в четырехугольникеКакие углы могут быть в четырехугольнике

На рисунках 9 и 9.1 изображены простые четырехугольники так как стороны четырехугольников не имеют самопересечений. А на рисунке 10 четырехугольник не является простым, так как стороны ( small A_1A_4 ) и ( small A_2A_3 ) пересекаются. Такой четырехугольник называется самопересекающийся.

Видео:Уроки геометрии. Чему равна сумма углов четырехугольника?Скачать

Уроки геометрии. Чему равна сумма углов четырехугольника?

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если она лежит по одну сторону от прямой, проходящей через любую его сторону.

Какие углы могут быть в четырехугольнике

На рисунке 11 четырехугольник лежит по одну сторону от прямых ( small m, n, p, q, ) проходящих через стороны четырехугольника. Поэтому такой четырехугольник выпуклый.

Какие углы могут быть в четырехугольнике

На рисунке 12 прямая ( small m) делит четырехугольник на две части, т.е. четырехугольник не лежит по одну сторону от прямой ( small m). Следовательно, этот четырехугольник не является выпуклым.

Видео:№47. В пространственном четырехугольнике ABCD стороны АВ и CD равны. Докажите, что прямые АВ и CDСкачать

№47. В пространственном четырехугольнике ABCD стороны АВ и CD равны. Докажите, что прямые АВ и CD

Правильный четырехугольник

Простой четырехугольник называется правильным, если все его стороны равны и все углы равны. Квадрат является правильным четырехугольником, так как все его стороны равны и все его углы равны 90°. Среди четырехугольников других правильных четырехугольников не существует.

На рисунке 5 изображен правильный четырехугольник (квадрат), так как у данного четырехугольника все стороны равны и все углы равны. Четырехугольник (ромб) на на рисунке 4 не является правильным, так как все стороны четырехугольника равны, но все его углы не равны друг другу. Прямоугольник также не является правильным четырехугольником, так как несмотря на то, что все углы прямоугольника равны, но все четыре стороны прямоугольника не равны друг другу.

Видео:В четырехугольник вписан ромб, стороны которого параллельны диагоналям четырехугольника.Скачать

В четырехугольник вписан ромб, стороны которого параллельны диагоналям четырехугольника.

Периметр четырехугольника

Сумма всех сторон четырехугольника называется периметром четырехугольника. Для четырехугольника ( small A_1A_2A_3A_4 ) периметр вычисляется из формулы:

( small P=A_1A_2+A_2A_3+A_3A_4+A_4A_1 )

Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Угол четырехугольника

Углом (внутренним углом) четырехугольника при данной вершине называется угол между двумя сторонами четырехугольника, сходящимися к этой вершине. Если четырехугольник выпуклый, то все углы четырехугольника меньше 180°. Если же четырехугольник невыпуклый, то он имеет внутренний угол больше 180° (угол ( small alpha ) на рисунке 13).

Какие углы могут быть в четырехугольнике

Видео:№400. Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.Скачать

№400. Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.

Внешний угол четырехугольника

Внешним углом четырехугольника при данной вершине называется угол смежный внутреннему углу четырехугольника при данной вершине.

Какие углы могут быть в четырехугольнике

На рисунке 14 угол α является внутренним углом четырехугольника при вершине ( small A_4, ) а углы β и γ являются внешними углами четырехугольника при этой же вершине. Очевидно, что при каждой вершине есть два внешних угла.

Видео:Миникурс по геометрии. ЧетырехугольникиСкачать

Миникурс по геометрии. Четырехугольники

Диагональ четырехугольника

Диагоналями называют отрезки, соединяющие две несоседние вершины четырехугольника.

Очевидно, что у четырехугольника две диагонали.

Видео:Сумма внутренних углов многоугольника. Выпуклые и невыпуклые многоугольники. 8 класс.Скачать

Сумма внутренних углов многоугольника. Выпуклые и невыпуклые многоугольники. 8 класс.

Сумма углов четырехугольника

Для любого простого четырехугольника по крайней мере один диагональ делит его на два треугольника. Сумма углов треугольника равна 180°. Поэтому сумма углов простого четырехугольника равна 360°.

Видео:Красивая задача про углы четырехугольникаСкачать

Красивая задача про углы четырехугольника

Сумма внешних углов четырехугольника

Пусть задан четырехугольник ( small A_1A_2A_3A_4 .) Внешний угол при вершине ( small A_1) равен ( small 180°-angle A_1.) Аналогично, внешние углы при вершинах ( small A_2, A_3, A_4 ) равны ( small 180°-angle A_2, ) ( small 180°-angle A_3, ) ( small 180°-angle A_4, ) соответственно. Тогда сумма внешних углов четырехугольника равна:

( small 180°-angle A_1 ) ( small +180°-angle A_2 ) ( small +180°-angle A_3 ) ( small +180°-angle A_4 )( small =720°-(angle A_1+angle A_2+angle A_3+angle A_4 )) ( small =720°-360°=360°. )

Задача 1. Доказать, что длина любой стороны четырехугольника меньше суммы длин трех его сторон.

Решение. Рассмотрим произвольный четырехугольник ABCD (Рис.15). Покажем, например, что AB

Видео:11 класс, 43 урок, Вписанный четырехугольникСкачать

11 класс, 43 урок, Вписанный четырехугольник

Сумма углов четырехугольника

Свойства

  1. Сумма углов четырехугольника равна 360°.
    ∠A + ∠B + ∠C + ∠D = 360°.
    Какие углы могут быть в четырехугольнике
  2. Если четырехугольник правильный, то каждый угол по 90°
    и этот четырехугольник является квадратом.
    ∠A = ∠B = ∠C = ∠D, ⇒ ∠A = ∠B = ∠C = ∠D = 90°,
    ABCD — квадрат.
    Какие углы могут быть в четырехугольнике
  3. Сумма противоположных углов четырехугольника равна 180°,
    если около четырехугольника описана окружность.
    ∠A + ∠С = ∠В + ∠D = 180°.
    Какие углы могут быть в четырехугольнике

Такие четырехугольники называют вписанными.

Это все виды четырехугольников,
которые изучаются в школьном
курсе по геометрии.

💥 Видео

№369. Найдите углы A, B и C выпуклого четырехугольника ABCD, еслиСкачать

№369. Найдите углы A, B и C выпуклого четырехугольника ABCD, если

Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.
Поделиться или сохранить к себе: