Как вычислить вектор в трапеции

Равные векторы в трапеции

Видео:ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 классСкачать

ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 класс

Равные векторы в трапеции

Напомним свойства трапеции, которые часто используются при решении задач. Некоторые из этих свойств были доказаны в заданиях для 9-го класса, другие попробуйте доказать самостоятельно. Приведённые рисунки напоминают ход доказательства.

$$ 4. ^ $$. Диагонали трапеции разбивают её на четыре треугольника с общей вершиной (рис. 20). Площади треугольников, прилежащих к боковым сторонам, равны, а треугольники прилежащие к основаниям — подобны.

$$ 4. ^ $$. В любой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжении боковых сторон, лежат на одной прямой (на рис. 21 точки `M`, `N`, `O` и `K`).

Как вычислить вектор в трапеции

$$ 4. ^ $$. В равнобокой трапеции углы при основании равны (рис. 22).

$$ 4. ^ $$. В равнобокой трапеции прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции (рис. 23).

$$ 4. ^ $$. В равнобокой трапеции диагонали равны (рис. 24).

$$ 4. ^ $$. В равнобокой трапеции высота, опущенная на большее основание из конца меньшего основания, делит его на два отрезка, один из которых равен полуразности оснований, а другой – их полусумме

(рис. 25, основания равны `a` и `b`, `a>b`).

Как вычислить вектор в трапеции

$$ 4. ^ $$. Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой (рис. 26).

$$ 4. ^ $$. Во всякой трапеции отрезок, соединяющий середины диагоналей, параллелен основаниям и равен полуразности оснований (рис. 27).

Как вычислить вектор в трапеции

$$ 4. ^ $$.В равнобокой трапеции `d^2=c^2+ab`, где `d` — диагональ, `c` — боковая сторона, `a` и `b` основания.

Во всякой трапеции сумма квадратов диагоналей равна сумме квадратов боковых сторон и удвоенного произведения оснований, т. е. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.

$$ 4. ^ $$. Во всякой трапеции с основаниями `a` и `b` отрезок с концами на боковых сторонах, проходящий через точку пересечения диагоналей параллельно основаниям, равен `(2ab)/(a+b)` (на рис. 28 отрезок `MN`).

$$ 4. ^ $$. Трапецию можно вписать в окружность тогда и только тогда, когда она равнобокая.

Докажем, например, утверждение $$ 4. ^ $$ .

Применяем теорему косинусов (см. рис. 29а и б):

`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,

`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (т. к. `cos(180^@-varphi)=-cos varphi`).

Проводим `CK«||«BA` (рис. 29в), рассматриваем треугольник `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. Используя последнее равенство, заменяем выражение в скобках в (2), получаем:

`d_1^2+d_2^2=c_1^2+c_2^2+2ab`.

В случае равнобокой трапеции `d_1=d_2`, `c_1=c_2=c`, поэтому получаем

`d^2=c^2+ab`.

Как вычислить вектор в трапеции

Отрезок, соединяющий середины оснований трапеции, равен `5`, одна из диагоналей равна `6`. Найти площадь трапеции, если её диагонали перпендикулярны.

`AC=6`, `BM=MC`, `AN=ND`, `MN=5` (рис. 30а). Во всякой трапеции середины оснований и точка пересечения диагоналей лежат на од-ной прямой (свойство $$ 4. ^ $$). Треугольник `BOC` прямоугольный (по условию `AC_|_BD`), `OM` — его медиана, проведённая из вершины прямого угла, она равна половине гипотенузы: `OM=1/2BC`. Аналогично устанавливается `ON=1/2AD`, поэтому `MN=1/2(BC+AD)`. Через точку `D` проведём прямую, параллельную диагонали `AC`, пусть `K` — её точка пересечения с прямой `BC` (рис. 30б).

Как вычислить вектор в трапеции

По построению `ACKD` — параллелограмм, `DK=AC`, `CK=AD` и `/_BDK=90^@`

(т. к. угол `BDK` — это угол между диагоналями трапеции).

Прямоугольный треугольник `ul(BDK)` с гипотенузой `BK=BC+AD=2MN=10` и катетом `DK=6` имеет площадь `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. Но площадь треугольника `BDK` равна площади трапеции, т. к. если `DP_|_BK`, то

Диагонали трапеции, пересекаясь, разбивают её на четыре треугольника с общей вершиной. Найти площадь трапеции, если площади треугольников, прилежащих к основаниям, равны `S_1` и `S_2`.

Пусть `BC=a`, `AD=b`, и пусть `h` — высота трапеции (рис. 31). По свойству $$ 4. ^ $$ `S_(ABO)=S_(CDO)`, обозначим эту площадь `S_0` (действительно, `S_(ABD)=S_(ACD)`, т. к. у них общие основания и равные высоты, т. е. `S_(AOB)+S_(AOD)=S_(COD)+S_(AOD)`, откуда следует `S_(AOB)=S_(COD)`). Так как `S_(ABC)=S_0 + S_1=1/2ah` и `S_(ACD)=S_0+S_2=1/2bh`, то `(S_0+S_1)/(S_0 + S_2)=a/b`.

Далее, треугольники `BOC` и `DOA` подобны, площади подобных треугольников относятся как квадраты соответствующих сторон, значит, `(S_1)/(S_2)=(a/b)^2`. Таким образом, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.Отсюда находим `S_0=sqrt(S_1S_2)`, и поэтому площадь трапеции будет равна

Как вычислить вектор в трапеции

Основания равнобокой трапеции равны `8` и `10`, высота трапеции равна `3` (рис. 32).

Как вычислить вектор в трапеции

Найти радиус окружности, описанной около этой трапеции.

Трапеция равнобокая, по свойству $$ 4. ^ $$ около этой трапеции можно описать окружность. Пусть `BK_|_AD`, по свойству $$ 4. ^ $$

Из прямоугольного треугольника `ABK` находим `AB=sqrt(1+9)=sqrt(10)` и `sinA=(BK)/(AB)=3/(sqrt10)`. Окружность, описанная около трапеции `ABCD`, описана и около треугольника `ABD`, значит (формула (1), § 1), `R=(BD)/(2sinA)`. Отрезок `BD` находим из прямоугольного треугольника `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (или по формуле `d^2=c^2+ab`), тогда

$$ 4. ^ $$. Площадь трапеции равна площади треугольника, две стороны которого равны диагоналям трапеции, а третья равна сумме оснований.

$$ 4. ^ $$. Если `S_1` и `S_2` — площади треугольников, прилежащих к основаниям, то площади треугольников, прилежащих к боковым сторонам равны `sqrt(S_1S_2)`, а площадь всей трапеции равна `(sqrt(S_1) +sqrt(S_2))^2`.

$$ 4. ^ $$. Радиус окружности, описанной около трапеции, находится по формуле `R+a/(2sin alpha)`, где `a` — какая-то сторона (или диагональ трапеции), `alpha` — смотрящий на неё вписанный угол.

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Разработка урока по теме «Применение векторов к решению задач. Средняя линия трапеции».

Видео:Трапеция. Практическая часть - решение задачи. 8 класс.Скачать

Трапеция. Практическая часть - решение задачи. 8 класс.

«Календарь счастливой жизни:
инструменты и механизм работы
для достижения своих целей»

Сертификат и скидка на обучение каждому участнику

Как вычислить вектор в трапеции

Г – 9 класс Урок № 7

Тема: «Применение векторов к решению задач. Средняя линия трапеции».

Дидактическая: на конкретных примерах показать применение векторов при решении геометрических задач; ввести понятия средней линии трапеции; доказать теорему о средней линии трапеции с помощью векторов.

Развивающая: развивать логическое мышление учащихся, учить решать задачи; развивать воображение – репродуктивное, творческое, образное; абстрактное мышление, умение обобщать.

Воспитательная: нравственное воздействие, воспитание культуры умственного труда, культуры общения.

Знать, действия производимые с векторами, понятие средней линии трапеции, теорему о средней линии трапеции.

Уметь вычислять среднюю линию трапеции, решать задачи с помощью векторов.

Сообщение темы и целей урока.

Актуализация знаний и умений обучающихся.

Проверка выполнения домашнего задания. Разбор нерешенных заданий.

Повторение изученного материала.

1. Ответить на вопросы на с. 213–214.

2. Проверка усвоения учащимися материала.

1. Устно ответить на вопросы:

1) Какие векторы называются коллинеарными? Изобразите на рисунке сонаправленные векторы Как вычислить вектор в трапециии Как вычислить вектор в трапециии противоположно направленные векторы Как вычислить вектор в трапецииКак вычислить вектор в трапециии .

2) Какой вектор называется произведением данного вектора на данное число?

3) Могут ли векторы Как вычислить вектор в трапециии Как вычислить вектор в трапециибыть неколлинеарными?

4) Сформулируйте основные свойства умножения вектора на число.

2. Решить задачу на доске и в тетрадях по готовому чертежу:

Как вычислить вектор в трапеции

Точки M и N лежат соответственно на сторонах AD и BC четырехугольника ABCD, причем AM : MD = BN : NC = 3 : 4.

Докажите, что середины отрезков AB, MN и CD лежат на одной прямой.

Пусть K1 – середина AB, K2 – середина MN, K3 – середина CD. Согласно задаче 2 из п. 84 имеем Как вычислить вектор в трапеции. Из условия следует, что Как вычислить вектор в трапеции, поэтому Как вычислить вектор в трапеции.

Таким образом, векторы Как вычислить вектор в трапециии Как вычислить вектор в трапецииколлинеарные, и, значит, точки K1, K2 и K3 лежат на одной прямой.

Изучение нового материала.

1. Определение трапеции. Виды трапеций.

2. Определение средней линии трапеции.

3. Доказательство теоремы о средней линии трапеции.

Доказательство оформить на доске и в тетрадях в виде следующей краткой записи:

Дано: ABCD – трапеция, AD || BC, M – середина стороны AB; N – середина стороны CD (рис. 266 учебника).

Доказать: MN || AD, MN = Как вычислить вектор в трапеции.

1) Согласно рассмотренной в классе задаче 1 Как вычислить вектор в трапеции.

2) Так как Как вычислить вектор в трапеции, то Как вычислить вектор в трапециии, значит, MN || AD.

3) Так как Как вычислить вектор в трапеции, то Как вычислить вектор в трапеции= AD + BC, поэтому MN = Как вычислить вектор в трапеции(AD + BC).

Формирование умений и навыков.

Работа по учебнику.

1. Векторы могут использоваться для решения геометрических задач. Рассмотрим вспомогательную задачу.

2. Разобрать решение задачи 1 на с. 208 учебника по рис. 264.

3. Решить задачу 2. Точки M и N – середины сторон AB и CD четырехугольника ABCD. Докажите, что Как вычислить вектор в трапеции

Пусть О – произвольная точка. Согласно задаче 1 из п. 84 имеем Как вычислить вектор в трапецииКак вычислить вектор в трапециипоэтому Как вычислить вектор в трапецииКак вычислить вектор в трапеции.

Примечание. Результат задачи 2 можно использовать при доказательстве теоремы о средней линии трапеции на следующем уроке.

4. 1. Решить на доске и в тетрадях задачу № 793.

Пусть a и b – основания трапеции, тогда а + b = 48 – (13 + 15) = 20 (см); средняя линия MN = Как вычислить вектор в трапеции= 10 (см).

2. Решить задачу № 795.

3. Решить задачу № 799 на доске и в тетрадях.

Как вычислить вектор в трапеции

Пусть BK – перпендикуляр, проведенный к основанию AD данной трапеции.

Тогда KD = AD – AK.

Но AK = Как вычислить вектор в трапеции, поэтому KD = AD – Как вычислить вектор в трапеции, то есть отрезок KD равен средней линии трапеции. Значит, средняя линия трапеции равна 7 см.

5. Решить задачу 3. Точка С лежит на отрезке AB, причем АС : СВ = 2 : 3. Докажите, что для любой точки О справедливо равенство Как вычислить вектор в трапеции

По условию AC:CB=2 : 3,поэтому Как вычислить вектор в трапецииНо Как вычислить вектор в трапецииСледовательно, Как вычислить вектор в трапецииоткуда получается Как вычислить вектор в трапеции

Примечание. Задача 3 является частным случаем более общей задачи 806.

6. Решить задачу № 786 на доске и в тетрадях.

Так как точка А1 – середина стороны ВС, то Как вычислить вектор в трапецииКак вычислить вектор в трапеции.

Далее Как вычислить вектор в трапеции

7. При наличии времени решить задачу 4.

Точки K, L, M, N – середины сторон AB, BC, CD, DE пятиугольника ABCDE, а точки P и Q – середины отрезков KM и LN. Докажите, что PQ || AE и PQ = 1/4 AE.

Как вычислить вектор в трапеции

Пусть О – произвольная точка. Согласно задаче 1 из п. 84 Как вычислить вектор в трапеции. Аналогично, Как вычислить вектор в трапеции.

Из этих равенств следует, что Как вычислить вектор в трапецииОтсюда следует, что PQ || AE и PQ = Как вычислить вектор в трапецииAE.

Подвести итоги урока, выставить отметки обучающимся за урок.

В результате изучения параграфа обучающиеся должны знать, какой вектор называется произведением вектора на число; уметь формулировать свойства умножения вектора на число; знать, какой отрезок называется средней линией трапеции; уметь формулировать и доказывать теорему о средней линии трапеции; уметь решать задачи типа №№ 782–787; 793–799.

Домашнее задание: изучить материал п. 87, 88; ответить на вопросы 18–20, с. 214 учебника; решить задачи №№ 787, 794, 796.

Видео:Средняя линия треугольника и трапеции. 8 класс.Скачать

Средняя линия треугольника и трапеции. 8 класс.

Применение векторов к решению задач (продолжение)

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Как вычислить вектор в трапеции

На данном уроке мы рассмотрим применение векторов для решения различных геометрических задач, вспомним и докажем некоторые геометрические факты.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Векторы и координаты»

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Разработка урока по теме «Применение векторов к решению задач. Средняя линия трапеции».

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Видео:8 класс, 49 урок, Средняя линия трапецииСкачать

8 класс, 49 урок, Средняя линия трапеции

«Снятие эмоционального напряжения
у детей и подростков с помощью арт-практик
и психологических упражнений»

Сертификат и скидка на обучение каждому участнику

Как вычислить вектор в трапеции

Г – 9 класс Урок № 7

Тема: «Применение векторов к решению задач. Средняя линия трапеции».

Дидактическая: на конкретных примерах показать применение векторов при решении геометрических задач; ввести понятия средней линии трапеции; доказать теорему о средней линии трапеции с помощью векторов.

Развивающая: развивать логическое мышление учащихся, учить решать задачи; развивать воображение – репродуктивное, творческое, образное; абстрактное мышление, умение обобщать.

Воспитательная: нравственное воздействие, воспитание культуры умственного труда, культуры общения.

Знать, действия производимые с векторами, понятие средней линии трапеции, теорему о средней линии трапеции.

Уметь вычислять среднюю линию трапеции, решать задачи с помощью векторов.

Сообщение темы и целей урока.

Актуализация знаний и умений обучающихся.

Проверка выполнения домашнего задания. Разбор нерешенных заданий.

Повторение изученного материала.

1. Ответить на вопросы на с. 213–214.

2. Проверка усвоения учащимися материала.

1. Устно ответить на вопросы:

1) Какие векторы называются коллинеарными? Изобразите на рисунке сонаправленные векторы Как вычислить вектор в трапециии Как вычислить вектор в трапециии противоположно направленные векторы Как вычислить вектор в трапеции Как вычислить вектор в трапециии .

2) Какой вектор называется произведением данного вектора на данное число?

3) Могут ли векторы Как вычислить вектор в трапециии Как вычислить вектор в трапециибыть неколлинеарными?

4) Сформулируйте основные свойства умножения вектора на число.

2. Решить задачу на доске и в тетрадях по готовому чертежу:

Как вычислить вектор в трапеции

Точки M и N лежат соответственно на сторонах AD и BC четырехугольника ABCD, причем AM : MD = BN : NC = 3 : 4.

Докажите, что середины отрезков AB, MN и CD лежат на одной прямой.

Пусть K1 – середина AB, K2 – середина MN, K3 – середина CD. Согласно задаче 2 из п. 84 имеем Как вычислить вектор в трапеции. Из условия следует, что Как вычислить вектор в трапеции, поэтому Как вычислить вектор в трапеции.

Таким образом, векторы Как вычислить вектор в трапециии Как вычислить вектор в трапецииколлинеарные, и, значит, точки K1, K2 и K3 лежат на одной прямой.

Изучение нового материала.

1. Определение трапеции. Виды трапеций.

2. Определение средней линии трапеции.

3. Доказательство теоремы о средней линии трапеции.

Доказательство оформить на доске и в тетрадях в виде следующей краткой записи:

Дано: ABCD – трапеция, AD || BC, M – середина стороны AB; N – середина стороны CD (рис. 266 учебника).

Доказать: MN || AD, MN = Как вычислить вектор в трапеции.

1) Согласно рассмотренной в классе задаче 1 Как вычислить вектор в трапеции.

2) Так как Как вычислить вектор в трапеции, то Как вычислить вектор в трапециии, значит, MN || AD.

3) Так как Как вычислить вектор в трапеции, то Как вычислить вектор в трапеции= AD + BC, поэтому MN = Как вычислить вектор в трапеции(AD + BC).

Формирование умений и навыков.

Работа по учебнику.

1. Векторы могут использоваться для решения геометрических задач. Рассмотрим вспомогательную задачу.

2. Разобрать решение задачи 1 на с. 208 учебника по рис. 264.

3. Решить задачу 2. Точки M и N – середины сторон AB и CD четырехугольника ABCD. Докажите, что Как вычислить вектор в трапеции

Пусть О – произвольная точка. Согласно задаче 1 из п. 84 имеем Как вычислить вектор в трапеции Как вычислить вектор в трапециипоэтому Как вычислить вектор в трапеции Как вычислить вектор в трапеции.

Примечание. Результат задачи 2 можно использовать при доказательстве теоремы о средней линии трапеции на следующем уроке.

4. 1. Решить на доске и в тетрадях задачу № 793.

Пусть a и b – основания трапеции, тогда а + b = 48 – (13 + 15) = 20 (см); средняя линия MN = Как вычислить вектор в трапеции= 10 (см).

2. Решить задачу № 795.

3. Решить задачу № 799 на доске и в тетрадях.

Как вычислить вектор в трапеции

Пусть BK – перпендикуляр, проведенный к основанию AD данной трапеции.

Тогда KD = AD – AK.

Но AK = Как вычислить вектор в трапеции, поэтому KD = AD – Как вычислить вектор в трапеции, то есть отрезок KD равен средней линии трапеции. Значит, средняя линия трапеции равна 7 см.

5. Решить задачу 3. Точка С лежит на отрезке AB, причем АС : СВ = 2 : 3. Докажите, что для любой точки О справедливо равенство Как вычислить вектор в трапеции

По условию AC:CB=2 : 3,поэтому Как вычислить вектор в трапецииНо Как вычислить вектор в трапецииСледовательно, Как вычислить вектор в трапецииоткуда получается Как вычислить вектор в трапеции

Примечание. Задача 3 является частным случаем более общей задачи 806.

6. Решить задачу № 786 на доске и в тетрадях.

Так как точка А1 – середина стороны ВС, то Как вычислить вектор в трапеции Как вычислить вектор в трапеции.

Далее Как вычислить вектор в трапеции

7. При наличии времени решить задачу 4.

Точки K, L, M, N – середины сторон AB, BC, CD, DE пятиугольника ABCDE, а точки P и Q – середины отрезков KM и LN. Докажите, что PQ || AE и PQ = 1/4 AE.

Как вычислить вектор в трапеции

Пусть О – произвольная точка. Согласно задаче 1 из п. 84 Как вычислить вектор в трапеции. Аналогично, Как вычислить вектор в трапеции.

Из этих равенств следует, что Как вычислить вектор в трапецииОтсюда следует, что PQ || AE и PQ = Как вычислить вектор в трапецииAE.

Подвести итоги урока, выставить отметки обучающимся за урок.

В результате изучения параграфа обучающиеся должны знать, какой вектор называется произведением вектора на число; уметь формулировать свойства умножения вектора на число; знать, какой отрезок называется средней линией трапеции; уметь формулировать и доказывать теорему о средней линии трапеции; уметь решать задачи типа №№ 782–787; 793–799.

Домашнее задание: изучить материал п. 87, 88; ответить на вопросы 18–20, с. 214 учебника; решить задачи №№ 787, 794, 796.

Видео:КАК найти площадь трапеции? Геометрия 8 класс | МатематикаСкачать

КАК найти площадь трапеции? Геометрия 8 класс | Математика

Применение векторов к решению задач (продолжение)

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Как вычислить вектор в трапеции

На данном уроке мы рассмотрим применение векторов для решения различных геометрических задач, вспомним и докажем некоторые геометрические факты.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Векторы и координаты»

🔥 Видео

Выразить векторы. Разложить векторы. Задачи по рисункам. ГеометрияСкачать

Выразить векторы. Разложить векторы. Задачи по рисункам. Геометрия

Полный разбор задач с векторами №2 ЕГЭ ПРОФИЛЬ 2024 | Профильная математика ЕГЭ 2024 | УМСКУЛСкачать

Полный разбор задач с векторами №2 ЕГЭ ПРОФИЛЬ 2024 | Профильная математика ЕГЭ 2024 | УМСКУЛ

Геометрия 9 класс (Урок№5 - Средняя линия трапеции.)Скачать

Геометрия 9 класс (Урок№5 - Средняя линия трапеции.)

8 класс, 15 урок, Площадь трапецииСкачать

8 класс, 15 урок, Площадь трапеции

№746. Основание AD прямоугольной трапеции ABCD с прямым углом A равно 12 смСкачать

№746. Основание AD прямоугольной трапеции ABCD с прямым углом A равно 12 см

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Сложение векторов. Правило параллелограмма. 9 класс.Скачать

Сложение векторов. Правило параллелограмма. 9 класс.

Геометрия 9 класс. Средняя линия трапецииСкачать

Геометрия 9 класс. Средняя линия трапеции

умножение ВЕКТОРА на число + теорема о средней линии ТРАПЕЦИИСкачать

умножение ВЕКТОРА на число + теорема о средней линии ТРАПЕЦИИ

8 класс, 6 урок, ТрапецияСкачать

8 класс, 6 урок, Трапеция

Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

8 класс, 48 урок, Применение векторов к решению задачСкачать

8 класс, 48 урок, Применение векторов к решению задач

выразить вектор через другие векторы,найти основания трапеции 8 класс АтанасянСкачать

выразить вектор через другие векторы,найти основания трапеции 8 класс Атанасян
Поделиться или сохранить к себе: