Площадь треугольника одна вторая периметра на радиус вписанной окружности

Площадь треугольника

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Видео:Задание 24 Площадь описанного треугольникаСкачать

Задание 24 Площадь описанного треугольника

Определение площади треугольника

Площадь треугольника — это величина, которая
показывает какие размеры у треугольника.

Сейчас, на примере покажем, что такое площадь,
а также, как можно найти площадь треугольника.

Площадь треугольника, можно очень легко объяснить
на примере прямоугольного треугольника в клеточном поле.
Площадь, в нашем случае, будет равна количеству клеток.

Для наглядности, нарисуем прямоугольный треугольник
ABC, со длинами сторон 3, 4 и 5, как на рисунке 2. Отметим, что он прямоугольный.

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Посчитаем количество клеток, которые занимает треугольник.
3 полных клетки, и 4 неполных клетки, но для того, чтобы узнать
площадь треугольника в клеточном поле нам нужно узнать количество
полных клеток, которые занимает весь треугольник. Наша задача в том,
чтобы неполные клетки преобразовать в полные.

Для этого нарисуем второй треугольник, так,
чтобы получился прямоугольник, как на рисунке 3.

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Как видим, весь прямоугольник занимает 12 полных клеток.

Формула площади прямоугольника равна произведению
одной стороны на другую — ​ ( S = ab ) ​,
поэтому площадь прямоугольника равна 3 * 4 = 12 клеткам.

Площадь треугольника, из которого состоит прямоугольник,
можно найти по другой формуле: ​ ( S = frac2 ab ) ​.
Подставив значения длин сторон, получаем — S = 0.5 * 3 * 4,
из чего следует, что S = 6 клетками, или же квадратным сантиметрам.

Прямоугольник можно условно разделить
на два треугольника, поэтому площадь треугольника
равна половине площади прямоугольника.

Формула площади треугольника — это формула,
по которой можно найти площадь треугольника.

Формулы площади треугольника применяют, только,
и только тогда, когда невозможно узнать площадь
треугольника, глядя на рисунок, или просто посчитав клетки.

Видео:Задача 6 №27624 ЕГЭ по математике. Урок 71Скачать

Задача 6 №27624 ЕГЭ по математике. Урок 71

Формулы площади треугольника

Ⅰ. Через высоту и основание

a — сторона, на которую падает высота,
b
— высота.

Самая известная формула площади треугольника.
Зная только высоту и сторону, на которую падает
эта высота, можно найти площадь треугольника.

Ⅱ. Через все стороны и периметр

p — полупериметр, вычисляется по формуле: ​ ( p = frac ) ​,
a, b, c — стороны треугольника.

Это формулу, нужно использовать когда известны
все три стороны треугольника. Зная три стороны
треугольника можно найти периметр, а дальше
найти и площадь заданного треугольника.

Эту формулу площади также называют формулой Герона.

Ⅲ. Через две стороны и угол между ними

[ S = frac a cdot b cdot sin β ]

a, b — стороны между которыми расположен угол β,
sin β — синус угла β.

Формула применяется, когда известен
один из углов, и две стороны, образующие
этот угол. В некоторых задачах площадь
треугольника можно найти только по этой формуле.

Ⅳ. Через периметр и радиус вписанной окружности

[ S = r cdot frac

2 ]

r — радиус вписанной окружности,
P
— периметр треугольника.

Тут даже не обязательно знать все стороны треугольника,
достаточно знать периметр и радиус описанной окружности.

Ⅴ. Через все стороны и радиус описанной окружности

abc — произведение всех сторон треугольника,
R — радиус описанной окружности.

Пожалуй, единственная формула, где площадь
треугольника можно найти только через радиус
описанной окружности и произведение трех сторон.

Ⅵ. Через сторону и два прилежащих к ней угла

a — сторона треугольника,
sin α — синус угла α,
sin β — синус угла β.

Готов поспорить, вы даже ни разу не видели этой формулы.
Эта очередная формула площади треугольника, применяется
в крайне редких случаях — когда известны два угла и сторона,
к которой эти углы примыкают.

Площадь треугольника через радиус вписанной окружности

Как найти площадь треугольника через радиус вписанной окружности?

Площадь треугольника равна произведению радиуса вписанной в этот треугольник окружности на на его полупериметр.

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Формула для нахождения площади треугольника через радиус вписанной окружности:

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Площадь треугольника одна вторая периметра на радиус вписанной окружности

окружность (O; r) — вписанная,

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Рассмотрим треугольник AOC.

Площадь треугольника одна вторая периметра на радиус вписанной окружности

(как радиус, проведенный в точку касания).

Следовательно, OF — высота треугольника AOC.

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Так как площадь треугольника ABC равна сумме площадей этих треугольников, то

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Что и требовалось доказать.

Если требуется найти площадь треугольника через его периметр, формулу записывают так:

Площадь треугольника одна вторая периметра на радиус вписанной окружности

где P — периметр треугольника, r — радиус вписанной в этот треугольник окружности.

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

2 Comments

Полезно, вспомнить курс школьной геометрии.
Разработчики сайта дерзайте дальше.

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Как найти площадь треугольника – все способы от самых простых до самых сложных

Зависит от того, какой треугольник.

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Чтобы найти площадь треугольника, надо сначала определить тип треугольника: прямоугольный, равнобедренный, равносторонний. Если он у вас не такой – отталкивайтесь от других данных: высоты, вписанной или описанной окружности, длин сторон. Привожу все формулы ниже.

Видео:Геометрия Периметр треугольника равен 32 см а радиус вписанной окружности 1,5 см Найдите площадьСкачать

Геометрия Периметр треугольника равен 32 см а радиус вписанной окружности 1,5 см Найдите площадь

Если треугольник прямоугольный

То есть один из его углов равен 90 градусам.

Надо перемножить катеты и поделить на два. Катеты – это две меньшие стороны, в сравнении с гипотенузой. Гипотенуза – это самая длинная сторона, она всегда находится напротив угла в 90 градусов.

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Видео:Площадь квадрата. Как найти площадь квадрата?Скачать

Площадь квадрата. Как найти площадь квадрата?

Если он равнобедренный

То есть у него равны боковые стороны. В таком случае надо провести высоту к основанию (той стороне, которая не равна «бедрам»), перемножить высоту с основанием и поделить результат на два.

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Если он равносторонний

То есть все три стороны равны. Ваши действия такие:

  1. Найдите квадрат стороны – умножьте эту сторону на нее же. Если у вас сторона равна 4, умножьте 4 на 4, будет 16.
  2. Умножьте полученное значение на корень из 3. Это примерно 1,732050807568877293527.
  3. Поделите все на 4.

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Видео:Уравнение годаСкачать

Уравнение года

Если известна сторона и высота

Площадь любого треугольника равна половине произведения стороны на высоту, которая к этой стороне проведена. Именно к этой, а не к какой-то другой.

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Чтобы провести высоту к стороне, надо найти вершину (угол), которая противоположна этой стороне, а потом опустить из нее на сторону прямую линию под углом в 90 градусов. На картинке высота обозначена синим цветом и буквой h, а линия, на которую она опускается, красным цветом и буквой a.

Видео:Формулы площади треугольника. Вписаная и описаная окружностьСкачать

Формулы площади треугольника. Вписаная и описаная окружность

Если известны две стороны и градус угла между ними

Если вы знаете, чему равны две стороны и угол между ними, то надо найти синус этого угла, умножить его на первую сторону, умножить на вторую и еще умножить на ½:

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Видео:Площадь треугольника и вписанная окружностьСкачать

Площадь треугольника и вписанная окружность

Если известны длины трех сторон

  1. Найдите периметр. Для этого сложите все три стороны.
  2. Найдите полупериметр – разделите периметр на два. Запомните значение.
  3. Отнимите от полупериметра длину первой стороны. Запомните.
  4. Отнимите от полупериметра длину второй стороны. Тоже запомните.
  5. Отнимите от полупериметра длину третьей стороны. И ее запомните.
  6. Умножьте полупериметр на каждое из этих чисел (разницу с первой, второй и третьей стороной).
  7. Найдите квадратный корень.

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.

Видео:Найдите площадь треугольника на рисунке ★ Два способа решенияСкачать

Найдите площадь треугольника на рисунке ★ Два способа решения

Если известны три стороны и радиус описанной окружности

Окружность вы можете описать вокруг любого треугольника. Чтобы найти площадь «вписанного» треугольника – того, который «вписался» в окружность, надо перемножить три его стороны и поделить их на четыре радиуса. Смотрите картинку.

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Видео:Формулы площади треугольникаСкачать

Формулы площади треугольника

Если известны три стороны и радиус вписанной окружности

Если вам удалось вписать в треугольник окружность, значит она обязательно касается каждой из его сторон. Следовательно, расстояние от центра окружности до каждой из сторон треугольника – ее радиус.

Чтобы найти площадь, посчитайте сначала полупериметр – сложите все стороны и поделите на два. А потом умножьте его на радиус.

Площадь треугольника одна вторая периметра на радиус вписанной окружности

Это были все способы найти площадь треугольника. Спасибо, что дочитали статью до конца. Лайкните, если не трудно.

🎦 Видео

Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

Геометрия Доказательство Площадь треугольника равна произведению его полупериметра и радиусаСкачать

Геометрия Доказательство Площадь треугольника равна произведению его полупериметра и радиуса

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

Геометрия Площадь треугольника равна 84 см2 а его периметр 72 см Найдите радиус окружности вписаннойСкачать

Геометрия Площадь треугольника равна 84 см2 а его периметр 72 см Найдите радиус окружности вписанной

Секретные формулы площади треугольникаСкачать

Секретные формулы площади треугольника

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline
Поделиться или сохранить к себе: