Как разделить окружность на заданное количество одинаковых частей, терминология при построении окружности, деление окружности на 3, 4, 5, 6, 8, 10 частей.
- Термины при построениях окружности
- Деление окружности на 4 и 8 одинаковых частей
- Деление окружности на 3 и 6 равных частей (кратные 3 трём)
- Деление окружности на 5 и 10 равных частей
- Деление окружности на N-ное количество одинаковых частей (построение правильного многоугольника с N сторон)
- Нахождение центра дуги окружности
- Разделить круг на 10 частей
- Как разделить круг на 10 частей пошагово
- Деление круга на равные части
- Деление круга на равные по площади части радиусами
- Деление круга на равные по площади части параллельными хордами
- Деление круга на равные части радиусами
- Деление круга на равные части параллельными хордами
- 🌟 Видео
Термины при построениях окружности
Окружностью называется замкнутая кривая линия, каждая точка которой расположена на одинаковом расстоянии от одной точки О, называемой центром.
Прямые линии, соединяющие любую точку окружности с её центром, называют радиусами R.
Прямая АВ, соединяющая две точки окружности и проходящая через её центр О, называется диаметром D.
Части окружностей называются дугами.
Прямая СD, соединяющая две точки на окружности, называется хордой.
Прямая МN,которая имеет только одну общую точку с окружностью называется касательной.
Часть круга, ограниченная хордой СD и дугой, называется сигментом.
Часть круга, ограниченная двумя радиусами и дугой, называется сектором.
Две взаимно перпендикулярные горизонтальная и вертикальная линии, пересекающиеся в центре окружности, называются осями окружности.
Угол, образованный двумя радиусами КОА, называется центральным углом.
Два взаимно перпендикулярных радиуса составляют угол в 90 0 и ограничивают 1/4 окружности.
Видео:Построение 10 угольника циркулемСкачать
Деление окружности на 4 и 8 одинаковых частей
Проводим окружность с горизонтальной и вертикальной осями, которые делят её на 4-ре равные части. Проведённые с помощью циркуля или угольника под 45 0 , две взаимно перпендикулярные линии делят окружность на 8-мь равных частей.
Видео:Как разделить окружность на 10 частей How to divide a circle into 10 partsСкачать
Деление окружности на 3 и 6 равных частей (кратные 3 трём)
Для деления окружности на 3, 6 и кратное им количество частей, проводим окружность заданного радиуса и соответствующие оси. Деление можно начинать от точки пересечения горизонтальной или вертикальной оси с окружностью. Заданный радиус окружности последовательно откладывается 6-ть раз. Затем полученные точки на окружности последовательно соединяются прямыми линиями и образуют правильный вписанный шести-угольник. Соединение точек через одну даёт равносторонний треугольник, и деление окружности на три равные части.
Видео:Деление окружности на 5, 10 и 7 равных частейСкачать
Деление окружности на 5 и 10 равных частей
Построение правильного пятиугольника выполняется следующим образом. Проводим две взаимно перпендикулярные оси окружности равные диаметру окружности. Делим правую половину горизонтального диаметра пополам с помощью дуги R1. Из полученной точки «а» в середине этого отрезка радиусом R2 проводим дугу окружности до пересечения с горизонтальным диаметром в точке «b». Радиусом R3 из точки «1» проводят дугу окружности до пересечения с заданной окружностью (т.5) и получают сторону правильного пятиугольника. Расстояние «b-О» даёт сторону правильного десятиугольника.
Деление окружности на N-ное количество одинаковых частей (построение правильного многоугольника с N сторон)
Выполняется следующим образом. Проводим горизонтальную и вертикальную взаимно перпендикулярные оси окружности. Из верхней точки «1» окружности проводим под произвольным углом к вертикальной оси прямую линию. На ней откладываем равные отрезки произвольной длины, число которых равно числу частей на которое мы делим данную окружность, например 9. Конец последнего отрезка соединяем с нижней точкой вертикального диаметра. Проводим линии, параллельные полученной, из концов отложенных отрезков до пересечения с вертикальным диаметром, разделив таким образом вертикальный диаметр данной окружности на заданное количество частей. Радиусом равным диаметру окружности, из нижней точки вертикальной оси проводим дугу MN до пересечения с продолжением горизонтальной оси окружности. Из точек M и N проводим лучи через чётные ( или нечётные) точки деления вертикального диаметра до пересечения с окружностью. Полученные отрезки окружности будут являться искомыми, т.к. точки 1, 2, …. 9 делят окружность на 9-ть ( N ) равных частей.
Видео:9-Деление круга на 10 частей и построение 5 конечной звезды с помощью золотого сеченияСкачать
Нахождение центра дуги окружности
Для нахождения центра дуги окружности нужно выполнить следующие построения: на данной дуге отмечаем четыре произвольные точки А, В, С, D и соединяем их попарно хордами АВ и СD. Каждую из хорд при помощи циркуля делим пополам, получив, таким образом, перпендикуляр, проходящий через середину соответствующей хорды. Взаимное пересечение этих перпендикуляров даёт центр данной дуги и соответствующей ей окружности.
Видео:Как разделить круг на равные частиСкачать
Разделить круг на 10 частей
Добрый день коллеги. Сегодня попытаемся разделить круг на 10 частей и с блеском выполним это. Разделить круг на равные части не сложно. Я знаю, вы справитесь.
Если читаете мои уроки, то некоторые из вас уже догадываются, как это будет происходить. Но все равно я пошагово проиллюстрирую процесс.
Так как сайт создавался для художников, то рассмотрим эту статью как рисовальщики. Допустим мы решили изобразить велосипед, или мотоцикл. Нам необходимо колеса разделить на 10 равных промежутков, для спиц. Такую проблему сегодня решим.
Не обязательно это мотоцикл. Это возможно узор:
- Рисунок по контуру тарелки
- Грани стакана
- Или графина
- Колесо водяной мельницы с перемычками
- Воздушная мельница тоже имеет лопасти с равными промежутками друг от друга
- Рисунок подшипника
- Также вентилятор
Такие и другие предметы возможно рисовать, применив этот урок.
Будем делать чертеж без перспективы. Сделать это с иллюзией глубины — посмотрим в другом уроке.
Вначале разобьём круг на пять равных частей. Как это сделать смотрим в статье. Очень рекомендую ее почитать, без этого дальнейшие действия бессмысленны.
Если сделано все правильно, то должен выйти вот такой рисунок (картинка выше).
Видео:Геометрия - Построение десятиугольникаСкачать
Как разделить круг на 10 частей пошагово
Наш урок не первый, где делим круги на равные части. В статьях есть обзоры:
- Разбивания на 3 и 6 одинаковых частей
- А также пять. Вы уже переходили по ссылке выше (надеюсь, что посмотрели)
- Семь делений тоже присутствует в уроках
- И как разбить на 8 равных промежутков
- Делим окружность 12 равными прямыми
Сейчас попробуем разделить окружность на 10 частей.
В заметке artatac есть рисунок с разбивкой круга на пять частей.
Рекомендую пятиугольник перевернуть вниз «головой». Нужно взять расстояние СЕ и начать его откладывать на круге начиная с точки D. Нижняя иллюстрация.
Вот результат (изображение внизу).
Заметьте, тело окружности поделено десятью засечками. Картинка ниже.
Соединив их получим ожидаемое.
Теперь рассмотрим альтернативный вариант.
Из угла Е проведем прямую через О. Из угла С вертикаль уже проведена. Убедитесь посмотрев картинку внизу.
Теперь из оставшихся трех углов проведем еще лучи.
Мы смогли разделить окружность на десять частей (вариант второй).
В итоге выйдет такой результат. Что проиллюстрировано ниже.
Такой очередной урок, и вы еще ближе стали к художникам профессионалам. Как обещал ничего сложного. Чуть-чуть внимания, желания и все получиться 🙂
Видео:Деление окружности на 12 равных частейСкачать
Деление круга на равные части
Статья содержит два калькулятора, рассчитывающие параметры деления круга на равные по площади части радиусами и параллельными хордами
Ниже представлены два калькулятора, рассчитывающие параметры разделения круга на равные части. Сначала — традиционный калькулятор, который делит круг на равные части радиусами (примерно так, как режут пиццу или торт), под ним — нетрадиционный калькулятор, который делит круг на равные по площади части параллельными хордами. Оба калькулятора визуализируют результат рисунком. Методы расчета с формулами для обоих калькуляторов приведены ниже, под калькуляторами.
Деление круга на равные по площади части радиусами
Деление круга на равные по площади части параллельными хордами
Деление круга на равные части радиусами
Традиционный и очень простой метод деления круга — по факту, нарезка равных секторов. Метод и формулы очень просты:
- Определяем угловой размер каждого сектора в радианах, путем деления 360 градусов на нужное число секторов.
- Определяем размер дуги сектора, перемножая радиус на угол в радианах
- Определяем размер хорды по теореме косинусов (хорда является основанием равнобедренного треугольника с боковыми сторонами R и противолежащим углом альфа.
Собственно и всё — мы получили все характеристики для N равных секторов
Деление круга на равные части параллельными хордами
Этот способ более любопытен, чем предыдущий. Для простоты будем рассматривать верхнюю половину круга, так как с нижней все будет симметрично.
Задача состоит в определении x-вой координаты точек, через которые нужно проводить хорды (на рисунке это точки x1 и x2). Выведем для начала формулу площади куска, отсекаемого хордой слева.
Верхнюю полуокружность можно представить графиком функции y=f(x), где x — это координата вдоль оси абсцисс, а y — это функция, численно равная y координате соответствующей точки верхней полуокружности.
По теореме Пифагора получаем следующую функцию
Чтобы получить площадь фигуры, отсекаемой хордой слева, надо проинтегрировать эту функцию от -R до x. Первообразная функции равна:
Осталось определиться с константой. Нам надо, чтобы в точке с координатами -R площадь была равна нулю. Подставив -R вместо x в формулу выше, получаем
Итак, полное выражение
Теперь рассмотрим нахождение координат крайней левой точки. Нам известна площадь, которую она должна отсечь (напоминаю, речь идет о полуокружности)
Таким образом мы можем приравнять
Что дает нам такое финальное уравнение
Данное уравнение является трансцендентным, а поэтому находить координату первой точки придется численным методом, например, методом бисекции или методом Ньютона. Калькулятор использует метод Ньютона.
Вторая и последующие точки находится аналогично, путем изменения размера отсекаемой площади. Для второй точки это будет , для третьей и так далее.
Зная координаты точек, несложно рассчитать все остальные параметры, в частности, длину хорды.
🌟 Видео
Уроки Photoshop. Как разделить круг на частиСкачать
Деление окружности на n- равные частиСкачать
Построение 8 угольника циркулемСкачать
КАК РАЗДЕЛИТЬ ОКРУЖНОСТЬ НА 12 РАВНЫХ ЧАСТЕЙ?Скачать
1 2 2 деление окружности на 5 равных частейСкачать
Деление окружности на 3; 6; 12 равных частейСкачать
деление окружности на произвольное число частейСкачать
Деление окружности на 5 равных частейСкачать
Деление окружностиСкачать
Деление окружности на N равных частей. Урок 8. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать
4K Как построить десятиугольник, regular decagon constructionСкачать
Чертеж детали с делением окружности на 3, 5, 10 частейСкачать
Деление окружности на 6 равных частейСкачать