Угол между высотой и медианой вектора

Угол между медианой и высотой в прямоугольном треугольнике

Как найти угол между медианой и высотой в прямоугольном треугольнике, если известны его острые углы?

Острые углы прямоугольного треугольника равны α и β (β>α). Найти угол между медианой и высотой, проведенными из вершины прямого угла.

Угол между высотой и медианой вектораДано : ∆ ABC, ∠C=90º,

Так как сумма острых углов прямоугольного треугольника равна 90º, в треугольнике ABC ∠A+∠B=90º, то есть α+β=90º. Значит, β=90º-α.

Угол между высотой и медианой вектора

Следовательно, треугольник ACK- равнобедренный с основанием AC. Отсюда, ∠ACK=∠A=α (как углы при основании равнобедренного треугольника).

Угол между высотой и медианой вектораРассмотрим треугольник ACF — прямоугольный (∠CFA=90º, так как CF — высота).

∠A+∠ACF=90º, откуда ∠ACF=90º-∠A=90º-α=β.

Вывод : угол между медианой и высотой, проведёнными к гипотенузе, равен разности острых углов прямоугольного треугольника.

Поскольку две другие высоты прямоугольного треугольника совпадают с его катетами, то угол между медианой и высотой, проведённой к катету, есть угол между медианой и другим катетом. Для нахождения этих углов требуются дополнительные данные.

Угол между высотой и медианой вектора∠CBP — угол между медианой BP и высотой BC

(высота BC является также катетом).

Угол между высотой и медианой вектора∠CAE — угол между медианой AE и высотой AC

Видео:Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

Угол между высотой и медианой вектора

Угол между высотой и медианой вектора

Найдем координаты точки D (медианы стороны ВС):
Xd=(3+4)/2=3,5.
Yd=(1-2)/2=-0,5.
D(3,5;-0,5). Вектор AD или AD.
Модуль вектора |AD|=√(6,25+12,25)=√18,5.
Уравнение прямой ВС:
(X-Xb)/(Xc-Xb)=(Y-Yb)/(Yc-Yb) или
(X-4)/(-1)=(Y-1)/(-3) — каноническое уравнение.
Уравнение прямой ВС в общем виде Ax+By+C=0:
3х-y-11=0, где А=3, В=-1, С=-11.
Вектор нормали прямой — это перпендикуляр к прямой.
Координаты вектора нормали из уравнения прямой ВС:
n==. Этот же вектор — направляющий вектор для прямой АЕ.
Формула для уравнения прямой, проходящей через точку А(1;3)
и имеющей направляющий вектор р, то есть уравнение прямой АЕ:
(X-1)/3=(Y-3)/-1 — каноническое уравнение.
х+3y-10=0 — общее уравнение прямой АЕ.
Найдем точку пересечения прямых АЕ и ВС:
Система двух уравнений:
3х-y-11=0 и х+3y-10=0. Решаем систему и имееи:
Х=4,3 и Y=1,9/ То есть точка Е(4,3;1,9).
Тогда вектор АЕ. Модуль вектора |AE|=√(10,89+1,21)=√12,1.
Угол между векторами AD и ВЕ:
Cosα=(Xad*Xae+Yad*Yae)/(√18,5*√12,1)≈ 12,1/14,96 ≈ 0,809.
Ответ: угол между векторами равен arccos(0,809. или α≈36°.

Второй вариант:
Находим точку D(3,5;-0,5). Вектор AD.
Медиана (Модуль вектора) |AD|=√(6,25+12,25)=√18,5. (смотри первый вариант).
Находим площадь треугольника по координатам его вершин по формуле
(по формуле Герона, когда стороны — сплошные корни не хочется решать):
S=(1/2)|(Xa-Xc)*(Yb-Yc)-(Xb-Xc)(Ya-Yc)| или в нашем случае:
S=(1/2)|(1-3)*(1+2)-(4-3)(3+2)|= 5,5.
Находим длину стороны ВС:
|BC|=√[(Xc-Xb)²+(Yc-Yb)²] или BC=√[(-1)²+(-3)²] =√10.
Тогда высота треугольника АЕ=2*S/ВС= 11√10/10.
Угол между высотой АЕ и медианой AD определяем по косинусу угла Спасибо

Видео:Математика без Ху!ни. Угол между векторами, применение скалярного произведения.Скачать

Математика без Ху!ни. Угол между векторами, применение скалярного произведения.

Задача. Найти угол между высотой и медианой прямоугольного треугольника

Найдіть кут між медіаною і висотою прямокутного трикутника , які проведені з вершини прямого кута , якщо гострий кут дорівнює 20 градусівНайдите угол между высотой и медианой прямоугольного треугольника, которые проведены из вершины прямого угла, если острый угол равен 20 градусов

.
Решение.
Решим задачу путем дополнительного построения вокруг заданной геометрической фигуры (треугольника), чтобы использовать свойства новой образованной фигуры (прямоугольника) для решения этой задачи по геометрии

Сначала достроим прямоугольный треугольник до прямоугольника.

Угол между высотой и медианой вектора

В результате дополнительного построения катеты прямоугольного треугольника одновременно являются сторонами прямоугольника, а гипотенуза — его диагональю.

Далее учтем следующие свойства треугольника и прямоугольника:

  • Сумма углов треугольника равна 180 градусам
  • Диагонали прямоугольника в точке пересечения делятся пополам
  • Диагонали прямоугольника равны

Величина одного из углов треугольника задана в условии задачи. Поскольку треугольник по условию прямоугольный, то мы можем найти величину третьего угла, зная, что сумма углов треугольника равна 180 градусам.

Поскольку угол CAB = 20°, то угол ABC = 180 — 90 — 20 = 70°
Таким образом, мы нашли градусную меру угла B в треугольнике ABC

Рассмотрим треугольник COA. Он равнобедренный, так как его стороны — это половины диагоналей прямоугольника. Это следует из свойств прямоугольника. Так как диагонали прямоугольника равны, а в точке пересечения они делятся пополам, то половины равных отрезков будут также между собой равны. Поскольку в равнобедренном треугольнике углы при основании равны, то:
∠OCA = ∠OAC = 20º

Рассмотрим треугольник BKC. CK является высотой треугольника ABC, проведенной к гипотенузе. Значит угол BKC — прямой, то есть равен 90 градусам, а сам треугольник BKC — прямоугольный. Поскольку треугольник BKC — прямоугольный, то угол BCK = 180 — 90 — 70 = 20°. (Это следует из того, что сумма углов треугольника 180 градусов, угол BKC — прямой, а величину угла B мы нашли ранее)

Поскольку угол BCA — прямой, то его градусная мера равна 90 градусов и, одновременно, равна сумме градусных мер составляющих его углов: BCK, KCO и OCA.
Величину угла BCK мы только что нашли, она составляет 20 градусов, величину угла OCA мы также нашли ранее и она тоже составляет 20 градусов.
Откуда:
20° + 20° + ∠KCO = 90°
∠KCO = 50°

Ответ: Угол между медианой и биссектрисой заданного прямоугольного треугольника равен 50 градусов.

🎦 Видео

Угол между медианой и высотойСкачать

Угол между медианой и высотой

11 класс, 5 урок, Угол между векторамиСкачать

11 класс, 5 урок, Угол между векторами

Вычисление медианы, высоты и угла по координатам вершинСкачать

Вычисление медианы, высоты и угла по координатам вершин

ЕГЭ база #15 / Треугольники и их элементы / Угол между биссектрисой, медианой и высотой / решу егэСкачать

ЕГЭ база #15 / Треугольники и их элементы / Угол между биссектрисой, медианой и высотой / решу егэ

Найти угол между высотой BD и медианой ВЕ этого треугольникаСкачать

Найти угол между высотой BD и медианой ВЕ этого треугольника

Угол между векторами | МатематикаСкачать

Угол между векторами | Математика

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

100 тренировочных задач #135 Угол между векторамиСкачать

100 тренировочных задач #135 Угол между векторами

Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnlineСкачать

Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnline

Геометрия 9 класс (Урок№18 - Угол между векторами. Скалярное произведение векторов.)Скачать

Геометрия 9 класс (Урок№18 - Угол между векторами. Скалярное произведение векторов.)

Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

найти угол между единичными векторамиСкачать

найти угол между единичными векторами

Вычисляем угол через координаты вершинСкачать

Вычисляем угол через координаты вершин

Как находить угол между векторамиСкачать

Как находить угол между векторами

Задача о векторах, построенных на медиане, биссектрисе и высоте треугольникаСкачать

Задача о векторах, построенных на медиане, биссектрисе и высоте треугольника

Метод координат. Как найти медиану треугольника, если известны координаты его вершин?Скачать

Метод координат. Как найти медиану треугольника, если известны координаты его вершин?

9 класс, 17 урок, Угол между векторамиСкачать

9 класс, 17 урок, Угол между векторами
Поделиться или сохранить к себе: