Найти все базы систем векторов

Найти базу системы векторов

Видео:Высшая математика. Линейные пространства. Векторы. БазисСкачать

Высшая математика. Линейные пространства. Векторы. Базис

Проверить образуют ли вектора базис онлайн калькулятор

Базисом в -мерном пространстве называется упорядоченная система из линейно-независимых векторов.

Введём также некоторые дополнительные понятия, необходимые для дальнейшего изложения.

, где &#x2212 некоторые числа и называется линейной комбинацией векторов .

Если существуют такие числа из которых хотя бы одно не равно нулю (например ) и при этом выполняется равенство:

, то система векторов &#x2212 является линейно-зависимой.

Если же указанное равенство выполняется лишь при условии, что все числа , тогда система векторов &#x2212 является линейно-независимой.

Базис может образовывать только линейно-независимая система векторов. Понятие линейной зависимости/независимости системы векторов, тесно связано с понятием ранга матрицы .

Наш онлайн калькулятор позволяет проверить образует ли система векторов базис. При этом калькулятор выдаёт подробное решение на русском языке.

Видео:Образуют ли данные векторы базисСкачать

Образуют ли данные векторы базис

Алгоритм нахождения базиса системы векторов

Для того чтобы найти базис системы векторов Av А2. А , необходимо:

1) составить соответствующую системе векторов однородную систему уравнений

Найти все базы систем векторов

2) привести эту систему к равносильной разрешенной системе вида

Найти все базы систем векторов

  • 3) записать базис системы векторов Б = (АрА2, . А ), включив в него векторы, соответствующие разрешенным неизвестным;
  • 4) записать разложения векторов по базису; коэффициентами разложения вектора А. по этому базису являются координаты соответствующего вектора

Найти все базы систем векторов

в разрешенной системе уравнений, т.е.

Найти все базы систем векторов

Система векторов, состоящая из п векторов, ранг которой равен г, может иметь несколько базисов. Число возможных базисов системы векторов определяется как число меньшее или равное числу сочетаний из п по г. Найти все базы систем векторов

Пример 3.3. Найти ранг и базис системы векторов

Найти все базы систем векторов

разложения векторов по базису, перейти к новому базису и найти число возможных базисов системы.

Решение. Составим систему уравнений A t ay + А2х2 + . + А„хп = 0, которая в координатной записи имеет вид

Найти все базы систем векторов

Приведение данной системы уравнений с помощью преобразований Жордана к равносильной разрешенной приведено в ниже следующей таблице.

Найти все базы систем векторов

Разрешенная система имеет вид

Найти все базы систем векторов

В базис системы векторов включаем 1-й и 2-й векторы Б: = (AVA2), которые соответствуют разрешенным неизвестным х1 и х2. Ранг системы векторов равен числу векторов, вошедших в базис, т.е. г = 2.

Запишем разложения векторов по базису. Коэффициентами разложения вектора А3 являются координаты вектора А’3 = (3, -2), т.е. коэффициенты при х3 в разрешенной системе уравнений (в последних трех строках таблицы), они образуют столбец, расположенный под х3 А3 = ЗЛ1 — 2Аг Аналогично, коэффициентами разложения вектора А4 являются координаты вектора А’4 = (4, 1) А4 = 4Ау + 1 Ат

Для нахождения нового базиса необходимо выбрать новый разрешающий элемент. Пусть этим элементом будет элемент я94 = 1.

Видео:Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Как найти базис данной системы векторов

Определение базиса.Система векторов образует базис, если:

1) она линейно-независима,

2) любой вектор пространства через нее линейно выражается.

Пример 1.Базис пространства Найти все базы систем векторов: Найти все базы систем векторов.

2. В системе векторов Найти все базы систем векторов базисом являются векторы: Найти все базы систем векторов, т.к. Найти все базы систем векторовлинейно выражается через векторы Найти все базы систем векторов.

Замечание.Чтобы найти базис данной системы векторов необходимо:

1) записать координаты векторов в матрицу,

2) с помощью элементарных преобразований привести матрицу к треугольному виду,

3) ненулевые строки матрицы будут являться базисом системы,

4) количество векторов в базисе равно рангу матрицы.

Теорема Кронекера-Капелли

Теорема Кронеккера–Капелли дает исчерпывающий ответ на вопрос о совместности произвольной системы Найти все базы систем векторовлинейных уравнений с Найти все базы систем векторовнеизвестными

Найти все базы систем векторов

Теорема Кронеккера–Капелли. Система линейных алгебраических урав­нений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу основной матрицы, Найти все базы систем векторов.

Алгоритм отыскания всех решений совместной системы линейных уравнений вытекает из теоремы Кронеккера–Капелли и следующих теорем.

Теорема. Если ранг совместной системы равен числу неизвестных, то система имеет единственное решение.

Теорема. Если ранг совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений.

Алгоритм решения произвольной системы линейных уравнений:

1. Найдем ранги основной и расширенной матриц системы. Если они не равны Найти все базы систем векторов( Найти все базы систем векторов), то система несовместна (не имеет решений). Если ранги равны Найти все базы систем векторов( Найти все базы систем векторов, то система совместна.

2. Для совместной системы найдем какой-нибудь минор, порядок Найти все базы систем векторовкоторого определяет ранг матрицы (такой минор называют базисным). Составим новую систему из Найти все базы систем векторовуравнений, в которых коэффициенты при неизвестных, входят в базисный минор (эти неизвестные называют главными неизвестными), остальные уравнения отбросим. Главные неизвестные с коэффициентами оставим слева, а остальные Найти все базы систем векторовнеизвестных (их называют свободными неизвестными) перенесем в правую часть уравнений.

3. Найдем выражения главных неизвестных через свободные. Получаем общее решение системы.

4. Придавая свободным неизвестным произвольные значения, получим соответствующие значения главных неизвестных. Таким образомнаходим частные решения исходной системы уравнений.

Линейное программирование. Основные понятия

Линейное программирование – это направление математического программирования, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием.

Необходимым условием постановки задачи линейного программирования являются ограничения на наличие ресурсов, величину спроса, производственную мощность предприятия и другие производственные факторы.

Сущность линейного программирования состоит в нахождении точек наибольшего или наименьшего значения некоторой функции при определенном наборе ограничений, налагаемых на аргументы и образующихсистему ограничений, которая имеет, как правило, бесконечное множество решений. Каждая совокупность значений переменных (аргументов функции F), которые удовлетворяют системе ограничений, называетсядопустимым планом задачи линейного программирования. Функция F, максимум или минимум которой определяется, называется целевой функцией задачи. Допустимый план, на котором достигается максимум или минимум функции F, называется оптимальным планом задачи.

Система ограничений, определяющая множество планов, диктуется условиями производства. Задачей линейного программирования (ЗЛП) является выбор из множества допустимых планов наиболее выгодного (оптимального).

В общей постановке задача линейного программирования выглядит следующим образом:

Имеются какие-то переменные х = (х1 , х2 , … хn ) и функция этих переменных f(x) = f (х1 , х2 , … хn ), которая носит название целевой функции. Ставится задача: найти экстремум (максимум или минимум) целевой функции f(x) при условии, что переменные x принадлежат некоторой области G:

Найти все базы систем векторов

В зависимости от вида функции f(x) и области G и различают разделы математического программирования: квадратичное программирование, выпуклое программирование, целочисленное программирование и т.д. Линейное программирование характеризуется тем, что
а) функция f(x) является линейной функцией переменных х1 , х2 , … хn
б) область G определяется системой линейных равенств или неравенств.

Математическая модель любой задачи линейного программирования включает в себя:

Видео:Решение "базисной системы векторов" (2)Скачать

Решение "базисной системы векторов" (2)

Базис системы векторов: онлайн-калькулятор

Векторы, образующие базис, являются линейно независимыми. В противном случае решения нет. Алгоритм в основе калькулятора проверяет соблюдение этого условия. При положительном результате переходит к дальнейшим расчетам.

Доказать, что векторы образуют базис, понадобится при решении задач по аналитической геометрии и выполнении типовых заданий по алгебре. Используйте наш сервис для отработки теорем и правил необходимое количество раз. Вы получите ответ с подробным решением любой задачи бесплатно.

  1. Задайте размерность вектора. Цифра меняется с помощью кнопок «+», «-».
    Найти все базы систем векторов
  2. Введите значения базисных векторов в соответствующие окна. Отправьте задание на вычисление кнопкой «Рассчитать».
    Найти все базы систем векторов
  3. Способ решения содержит векторное уравнение, которое преобразовывается в матричный вид для решения методом Гаусса. Кнопкой «Показать подробное решение» вы можете развернуть последовательные вычисления.
    Найти все базы систем векторов
  4. После вычислений доступен ответ.
    Найти все базы систем векторов

Видео:Примеры Линейная зависимость векторов Базис и ранг системы векторовСкачать

Примеры  Линейная зависимость векторов  Базис и ранг системы векторов

Материалы, которые помогут вам лучше разобраться в теме:

Видео:Линейная зависимость и линейная независимость векторов.Скачать

Линейная зависимость и  линейная независимость  векторов.

Как найти базис векторов онлайн

Автоматические расчеты производятся по проверенным формулам и тестируются на примерах. Поэтому с помощью онлайн-калькулятора вы сможете получить точный ответ.

Показать, что векторы образуют базис, несложно. Для этого необходимо:

  • Найти определитель, построенный на данных векторах. Его значение не должно быть равным нулю.
  • Произвести дальнейшие вычисления по методу Гаусса.

Раздел онлайн-калькуляторов охватывает не только тему векторов. Здесь собраны все основные типы задач. Сервисом часто пользуются студенты технических специальностей. Также среди нашей аудитории – школьники, их родители, преподаватели, ученые, работники конструкторских бюро и др.

Теперь подготовка к занятиям стала быстрой и доступной. Вы можете сверить ответы и найти у себя ошибку, изучив полученное решение. После нескольких тренировок способ вычислений становится понятным, его можно применять на самостоятельных, семинарах, зачетах.

Мы разработали понятный интерфейс для удобного использования. Если остались вопросы, смотрите инструкцию. Для индивидуального объяснения непонятной темы напишите консультанту и получите скидку на первое занятие с преподавателем.

Видео:Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.

Проверить образуют ли вектора базис онлайн калькулятор

Базисом в -мерном пространстве называется упорядоченная система из линейно-независимых векторов.

Введём также некоторые дополнительные понятия, необходимые для дальнейшего изложения.

, где &#x2212 некоторые числа и называется линейной комбинацией векторов .

Если существуют такие числа из которых хотя бы одно не равно нулю (например ) и при этом выполняется равенство:

, то система векторов &#x2212 является линейно-зависимой.

Если же указанное равенство выполняется лишь при условии, что все числа , тогда система векторов &#x2212 является линейно-независимой.

Базис может образовывать только линейно-независимая система векторов. Понятие линейной зависимости/независимости системы векторов, тесно связано с понятием ранга матрицы .

Наш онлайн калькулятор позволяет проверить образует ли система векторов базис. При этом калькулятор выдаёт подробное решение на русском языке.

📸 Видео

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Базис. Разложение вектора по базису.Скачать

Базис. Разложение вектора по базису.

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Векторы #3: многомерные системы координат, базисные векторыСкачать

Векторы #3: многомерные системы координат, базисные векторы

Линейная зависимость векторовСкачать

Линейная зависимость векторов

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Матрицы и векторыСкачать

Матрицы и векторы

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

Коллинеарность векторовСкачать

Коллинеарность векторов

Разложение вектора по базису. 9 класс.Скачать

Разложение вектора по базису. 9 класс.

19. Ранг матрицы. Ранг системы векторовСкачать

19. Ранг матрицы. Ранг системы векторов

Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать

Аналитическая геометрия, 1 урок, Векторы в пространстве
Поделиться или сохранить к себе: