Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами (рис. 1).
![]() |
| рис. 1 |
- Условия коллинеарности векторов
- Примеры задач на коллинеарность векторов
- Примеры задач на коллинеарность векторов на плоскости
- Примеры задач на коллинеарность векторов в пространстве
- Компланарные векторы и условие компланарности
- Определение компланарных векторов
- Условия компланарности векторов
- Компланарные векторы, исследование системы векторов на компланарность.
- Необходимое и достаточное условие компланарности трех векторов.
- Исследование системы векторов на компланарность, примеры и решения.
- 💡 Видео
Видео:Доказать, что точки лежат в одной плоскости - bezbotvyСкачать

Условия коллинеарности векторов
Два вектора будут коллинеарны при выполнении любого из этих условий:
Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что
N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.
N.B. Условие 3 применимо только для трехмерных (пространственных) задач.
Доказательство третего условия коллинеарности
Пусть есть два коллинеарные вектора a = < ax ; ay ; az > и b = < nax ; nay ; naz >. Найдем их векторное произведение
Видео:Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Примеры задач на коллинеарность векторов
Примеры задач на коллинеарность векторов на плоскости
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:
| ax | = | ay | . |
| bx | by |
| Вектора a и b коллинеарны т.к. | 1 | = | 2 | . |
| 4 | 8 |
| Вектора a и с не коллинеарны т.к. | 1 | ≠ | 2 | . |
| 5 | 9 |
| Вектора с и b не коллинеарны т.к. | 5 | ≠ | 9 | . |
| 4 | 8 |
Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:
Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то
| n = | by | = | 6 | = 2 |
| ay | 3 |
Найдем значение n a :
Так как b = n a , то вектора a и b коллинеарны.
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности
| ax | = | ay | . |
| bx | by |
| 3 | = | 2 | . |
| 9 | n |
Решим это уравнение:
| n = | 2 · 9 | = 6 |
| 3 |
Ответ: вектора a и b коллинеарны при n = 6.
Примеры задач на коллинеарность векторов в пространстве
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае пространственной задачи для векторов a и b примет вид:
| ax | = | ay | = | az | . |
| bx | by | bz |
Вектора a и b коллинеарны т.к. 1 4 = 2 8 = 3 12
Вектора a и с не коллинеарны т.к. 1 5 = 2 10 ≠ 3 12
Вектора с и b не коллинеарны т.к. 5 4 = 10 8 ≠ 12 12
Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:
Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то
| n = | by | = | 6 | = 2 |
| ay | 3 |
Найдем значение n a :
Так как b = n a , то вектора a и b коллинеарны.
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности
| ax | = | ay | = | az | . |
| bx | by | bz |
| 3 | = | 2 | = | m |
| 9 | n | 12 |
Из этого соотношения получим два уравнения:
| 3 | = | 2 |
| 9 | n |
| 3 | = | m |
| 9 | 12 |
Решим эти уравнения:
| n = | 2 · 9 | = 6 |
| 3 |
| m = | 3 · 12 | = 4 |
| 9 |
Ответ: вектора a и b коллинеарны при n = 6 и m = 4.
Видео:Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать

Компланарные векторы и условие компланарности
В данной статье мы рассмотрим такие темы, как:
- определение компланарных векторов;
- условия компланарности векторов;
- примеры задач на компланарность векторов.
Видео:Задача 2. Коллинеарны ли векторы с1 и с2, построенные по векторам a и b?Скачать

Определение компланарных векторов
Компланарные векторы — это векторы, которые параллельны одной плоскости или лежат на одной плоскости.
Два любых вектора всегда компланарны, поскольку всегда можно найти плоскости параллельные 2-м произвольным векторам.
Видео:10 класс, 43 урок, Компланарные векторыСкачать

Условия компланарности векторов
- Для 3-х векторов выполняется условие: если смешанное произведение 3-х векторов равно нулю, то эти три вектора компланарны.
- Для 3-х векторов выполняется условие: если три вектора линейно зависимы, то они компланарны.
- Для n-векторов выполняется условие: если среди векторов не более 2-х линейно независимых векторов, то они компланарны.
Примеры решения задач на компланарность векторов
Исследуем на компланарность векторы
a ¯ = ( 1 ; 2 ; 3 ) , b = ( 1 ; 1 ; 1 ) и c ¯ = ( 1 ; 2 ; 1 )
Как решить?
Векторы будут являться компланарными, если их смешанное произведение равно нулю, поэтому вычисляем смешанное произведение заданных векторов. Для этого составляем определитель, по строкам которого записываются координаты векторов-сомножителей:
( a ¯ , b ¯ , c ¯ ) = 1 2 3 1 1 1 1 2 1 = = 1 × 1 × 1 + 1 × 2 × 3 + 2 × 1 × 1 — 1 × 1 × 3 — 2 × 1 × 1 — 1 × 2 × 1 = 2 ≠ 0
Отсюда следует, что смешанное произведение не равняется нулю, поэтому векторы не являются компланарными.
Ответ: векторы не являются компланарными.
Докажем, что три вектора
a ¯ = ( 1 ; — 1 ; 2 ) , b = ( 0 ; 1 ; — 1 ) и c ¯ = ( 2 ; — 2 ; 4 ) компланарны.
Как решить?
Находим смешанное произведение данных векторов:
( a ¯ , b ¯ , c ¯ ) = 1 — 1 2 0 1 — 1 2 — 2 4 = = 1 × 1 × 4 + 0 × ( — 2 ) × 2 + ( — 1 ) × ( — 1 ) × × 2 — 2 × 1 × 2 — ( — 2 ) × ( — 1 ) × 1 — 0 × ( — 1 )
Из данного примера видно, что смешанное произведение равняется нулю.
Ответ: векторы являются компланарными.
Проверим, компланарны ли векторы
Как решить?
Необходимо найти количество линейно независимых векторов: записываем значения векторов в матрицу и выполняем элементарные преобразования:
1 1 1 1 2 0 0 — 1 1 3 3 3
Из 2-ой строки вычитаем 1-ю, из 4-ой вычитаем 1-ю, умноженную на 3:
1 1 1 1 — 1 2 — 1 0 — 1 0 — 1 1 3 — 3 3 — 3 3 — 3
1 1 1 0 1 — 1 0 — 1 1 0 0 0
К 3-ей строке прибавляем 2-ю:
1 1 1 0 1 — 1 0 + 0 — 1 + 1 1 + ( — 1 ) 3 — 3 3 — 3 3 — 3
1 1 1 0 1 — 1 0 0 0 0 0 0
Поскольку в матрице только две ненулевые строки, делаем вывод, что среди них всего два линейно независимых вектора.
Ответ: векторы являются компланарными, поскольку среди них всего два линейно независимых вектора.
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Компланарные векторы, исследование системы векторов на компланарность.
В этой статье мы поговорим о компланарности векторов. Сначала вспомним определение компланарности и получим необходимое и достаточное условие компланарности трех векторов в трехмерном пространстве. Далее разберемся с задачей исследования системы из n векторов на компланарность, рассмотрим решения характерных примеров.
Навигация по странице.
Видео:10 класс, 10 урок, Параллельные плоскостиСкачать

Необходимое и достаточное условие компланарности трех векторов.
Напомним определение компланарных векторов.
Векторы называются компланарными, если они принадлежат одной или параллельным плоскостям.
Два вектора 









А как же определить, являются ли три вектора компланарными?
Для этого существует необходимое и достаточное условие компланарности трех векторов в пространстве. Оно основано на понятии смешанного произведения векторов. Сформулируем его в виде теоремы.
Для компланарности трех векторов 

Пусть 


Так как 








Пусть теперь векторы 


Так как векторы 





Итак, теорема полностью доказана.
Покажем применение доказанного условия компланарности трех векторов к решению задач.
Компланарны ли векторы 
Вычислим их смешанное произведение по координатам:
Так как мы получили ноль, то условие компланарности выполнено, следовательно, заданные векторы компланарны.
Необходимое и достаточное условие компланарности векторов можно использовать для проверки принадлежности четырех точек пространства А, В, С и D одной плоскости. Для этого находим координаты векторов 
Принадлежат ли точки 
Найдем координаты векторов 
Теперь вычисляем смешанное произведение этих векторов
Так как смешанное произведение векторов отлично от нуля, то векторы 
Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Исследование системы векторов на компланарность, примеры и решения.
А как же быть, если требуется установить компланарность системы векторов, число векторов которой больше трех?
Давайте ответим на этот вопрос и получим условие компланарности системы из n векторов трехмерного пространства.
В предыдущем пункте мы показали, что для компланарности трех векторов 







Обобщив последнее утверждение, мы получим необходимое и достаточное условие компланарности системы из n векторов трехмерного пространства: для компланарности системы из n векторов трехмерного пространства необходимо и достаточно, чтобы ранг матрицы, строками которой являются координаты векторов системы, был меньше трех.
Компланарны ли векторы
Составим матрицу, строками которой примем координаты данных векторов
Сразу легко отыскать минор второго порядка, отличный от нуля, 
Переберем окаймляющие его миноры третьего порядка:
Все они равны нулю, следовательно, ранг матрицы равен двум, поэтому, векторы заданной системы векторов компланарны в силу выполнения необходимого и достаточного условия компланарности.
💡 Видео
18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

Коллинеарные векторы.Скачать

Коллинеарность векторовСкачать

Задача 5. Компланарны ли векторы a, b, c.Скачать

Математика без Ху!ни. Уравнение плоскости.Скачать

ГЕОМЕТРИЯ 11 класс: Компланарные векторыСкачать

Как разложить вектор по базису - bezbotvyСкачать

Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

10 класс, 17 урок, Признак перпендикулярности прямой и плоскостиСкачать







