Если у четырехугольника все стороны равны, то он является ромбом.
1) Проведем в четырехугольнике ABCD диагональ AC.
2) Так как AB=BC (по условию), то треугольник ABC — равнобедренный с основанием AC (по определению).
Так как углы при основании равнобедренного треугольника равны, то ∠BAC=∠BCA.
3) Аналогично, треугольник ADC — равнобедренный с основанием AC и ∠DAC=∠DCA.
4) В треугольниках ABC и ADC:
AB=AD и BC=DC (по условию);
сторона AC — общая.
Следовательно, треугольники ABC и ADC равны (по трем сторонам).
5) Из равенства треугольников следует равенство соответствующих углов:
∠BAC=∠DAC и ∠BCA=∠DCA.
Поскольку эти углы — внутренние накрест лежащие при прямых AB и CD и секущей AC, то AB ∥ CD (по признаку параллельности прямых).
6) В четырехугольнике ABCD две стороны AB и CD параллельны и равны. Значит, ABCD — параллелограмм (по признаку).
А так как у него все стороны равны (по условию), то ABCD — ромб (по определению).
Видео:№568. Докажите, что четырехугольник — ромб, если его вершинами являются середины сторон:Скачать
Как доказать что четырехугольник ромб
Определение
Ромб – это параллелограмм, у которого все стороны равны.
Таким образом, ромб обладает всеми свойствами параллелограмма:
(sim) противоположные углы ромба попарно равны;
(sim) соседние углы ромба в сумме дают (180^circ) ;
(sim) диагонали точкой пересечения делятся пополам.
Теорема: свойство ромба
Диагонали ромба перпендикулярны и делят его углы пополам.
Доказательство
Рассмотрим ромб (ABCD) .
По определению ромба (AB = AD) , поэтому треугольник (BAD) равнобедренный. Так как ромб – параллелограмм, то его диагонали точкой (O) пересечения делятся пополам. Следовательно, (AO) – медиана равнобедренного треугольника (BAD) , а значит, высота и биссектриса этого треугольника. Поэтому (ACperp BD) и (angle BAC = angle DAC) .
Теорема: признаки ромба
1. Если в параллелограмме диагонали перпендикулярны, то это – ромб.
2. Если в параллелограмме диагонали делят его углы пополам, то это – ромб.
3. Если в выпуклом четырехугольнике все стороны равны, то он – ромб.
Доказательство
1) Рассмотрим параллелограмм (ABCD) . Пусть (ACperp BD) .
Т.к. в параллелограмме диагонали точкой пересечения делятся пополам, то в треугольнике (ABD) отрезок (AO) – медиана. Т.к. к тому же (AO) – высота (следует из условия), то (triangle ABD) – равнобедренный, т.е. (AB=AD) . Т.к. у параллелограмма противоположные стороны равны, то отсюда следует, что все его стороны будут равны.
2) Пусть (AC) – биссектриса угла (angle A) .
Т.к. в параллелограмме диагонали точкой пересечения делятся пополам, то в треугольнике (ABD) отрезок (AO) – медиана. Т.к. к тому же (AO) – биссектриса (следует из условия), то (triangle ABD) – равнобедренный, т.е. (AB=AD) . Т.к. у параллелограмма противоположные стороны равны, то отсюда следует, что все его стороны будут равны.
3) Пусть (ABCD) – произвольный четырехугольник и (AB=BC=CD=AD) .
Т.к. противоположные стороны четырехугольника попарно равны, то он – параллелограмм. Т.к. у него все стороны равны, то по определению это ромб.
Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать
Ромб и его свойства, определение и примеры с решением
Ромбом называют параллелограмм, у которого все стороны равны (рис. 48).
Так как ромб является параллелограммом, то он имеет все свойства параллелограмма.
1. Сумма любых двух соседних углов ромба равна 180°.
2. У ромба противолежащие углы равны.
3. Диагонали ромба точкой пересечения делятся пополам.
4. Периметр ромба
Кроме того, ромб имеет еще и такое свойство.
5. Диагонали ромба взаимно перпендикулярны и делят его углы пополам.
Доказательство:
Пусть и — диагонали ромба (рис. 49), — точка их пересечения. Поскольку и то — медиана равнобедренного треугольника проведенная к основанию Поэтому является также высотой и биссектрисой треугольника
Следовательно, и
Аналогично можно доказать, что диагональ АС делит пополам угол а диагональ делит пополам углы и
Пример:
Угол между высотой и диагональю ромба проведенными из одной вершины, равен 28°. Найдите углы ромба.
Решение:
Пусть — диагональ ромба а — его высота (рис. 50), = 28°.
1) В
2) Так как делит угол пополам, то
3) Тогда
Ответ. 124°, 56°, 124°, 56°.
Рассмотрим признаки ромба.
Теорема (признаки ромба). Если в параллелограмме: 1) две соседние стороны равны, или 2) диагонали пересекаются под прямым углом, или 3) диагональ делит пополам углы параллелограмма, — то параллелограмм является ромбом.
Доказательство:
1) Пусть — параллелограмм (рис. 48). Так как (по условию) и (по свойству параллелограмма), то Следовательно, — ромб.
2) Пусть (рис. 49). Поскольку (по свойству параллелограмма), то (по двум катетам). Следовательно, По п. 1 этой теоремы — ромб.
3) Диагональ делит пополам угол параллелограмма (рис. 49), то есть Так как — секущая, то (как внутренние накрест лежащие). Следовательно, Поэтому по признаку равнобедренного треугольника — равнобедренный и По п. 1 этой теоремы — ромб.
Пример:
Докажите, что если в четырехугольнике все стороны равны, то этот четырехугольник — ромб.
Доказательство:
Пусть (рис. 48).
1) Так как противолежащие стороны четырехугольника попарно равны, то — параллелограмм по признаку параллелограмма.
2) У параллелограмма соседние стороны равны. Поэтому — ромб (по признаку ромба).
Слово «ромб» греческого происхождения, которое в древние времена означало вращающееся тело, веретено, волчок. Ромб тогда связывали с сечением веретена, на которое намотаны нити.
В «Началах» Евклида термин «ромб» встречается единожды, а свойства ромба Евклид вообще не рассматривал.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Квадрат и его свойства
- Трапеция и ее свойства
- Площадь трапеции
- Центральные и вписанные углы
- Четырехугольники и окружность
- Параллелограмм, его свойства и признаки
- Площадь параллелограмма
- Прямоугольник и его свойства
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
📹 Видео
Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать
Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать
Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать
Площадь ромба. Легче понять...Скачать
Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.Скачать
Задание 25 Доказать, что четырёхугольник прямоугольник Определение прямоугольникаСкачать
Задание 25 Доказать, что четырёхугольник параллелограмм Определение параллелограммаСкачать
Ромб. 8 класс.Скачать
Ромб, признаки. 8 класс.Скачать
Геометрия 8 класс (Урок№6 - Прямоугольник. Ромб. Квадрат.)Скачать
8 класс, 3 урок, ЧетырехугольникСкачать
ЧЕТЫРЕХУГОЛЬНИКИ и их свойства+доказательство теорем/8 класс.Скачать
РомбСкачать
Прямоугольник. 8 класс.Скачать
№700. Докажите, что в любой ромб можно вписать окружность.Скачать
№371. Докажите, что выпуклый четырехугольник ABCD является параллелограммом,Скачать
Доказательство первого признака параллелограммаСкачать
Ромб и его свойства доказательствоСкачать