Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная

Из произвольной точки a, взятой на стороне треугольника, проводится прямая, параллельная другой его стороне и пересекающая третью в точке b. далее процесс повторяется. в результате получается ломаная. верно ли, что она замыкается?

Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Ответы на вопрос

Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная

ну две стороны уже равны , а высота это общая сторона. также , если это высота , то значит исходя из угла она будет делить его пополам , потому что высота равнобедренного треугольника является его медианой и биссектрисой , то то.=)

Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная

как известно (по теореме) площадь параллелограмма равна произведению смежных сторон на синус угла между ними:

Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная

пусть треуг авс — осевое сечение конуса.

тогда ас — диаметр основания, ав = вс = l — образующая конуса.

проведем высоту вм к диаметру ас.

треугольник авм — прямоугольный, ам = 14 (радиус), угол а = 30 град.

тогда ав = r/cos30 = 14*2/кор3 = 28/кор3.

тогда sбок = пrl = 392п/кор3 sосн = пr^2 = 196п

sполн = sбок + sосн = 196п[(2кор3/3) + 1] = (196п/3)(2кор3 + 3)

Видео:Параллелограммы | Задачи 11-22 | Решение задач | Волчкевич |Уроки геометрии в задачах 7-8Скачать

Параллелограммы | Задачи 11-22 | Решение задач | Волчкевич |Уроки геометрии в задачах 7-8

Неравенство треугольника — определение и вычисление с примерами решения

Содержание:

Неравенство треугольника:

Опыт нам подсказывает, что путь из точки А в точку С по прямой АС короче, чем по ломаной ABC (рис. 255), т. е. АС 12+21 (рис. 258).

Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная

Замечание. Из неравенств треугольника Из произвольной точки а взятой на стороне треугольника проводится прямая параллельнаяследует, что Из произвольной точки а взятой на стороне треугольника проводится прямая параллельнаято есть любая сторона треугольника больше разности двух других его сторон. Так, для стороны а справедливо Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная

Пример:

Внутри треугольника ABC взята точка М (рис. 259). Доказать, что периметр треугольника АМС меньше периметра треугольника ABC.

Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная

Решение:

Так как у треугольников ABC и АМС сторона АС — общая, то достаточно доказать, что AM + МС Из произвольной точки а взятой на стороне треугольника проводится прямая параллельнаяB (рис. 108, а).

2) Отложим на стороне АВ отрезок АF, равный стороне AC (рис. 108, б).

Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная

3) Так как АF Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная1.

4) Угол 2 является внешним углом треугольника ВFС, следовательно, Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная2 > Из произвольной точки а взятой на стороне треугольника проводится прямая параллельнаяB.

5) Так как треугольник FАС является равнобедренным, то Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная1 = Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная2.

Таким образом, Из произвольной точки а взятой на стороне треугольника проводится прямая параллельнаяBСА > Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная1, Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная1 = Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная2 и Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная2 > Из произвольной точки а взятой на стороне треугольника проводится прямая параллельнаяB.

Отсюда получаем, что Из произвольной точки а взятой на стороне треугольника проводится прямая параллельнаяВСА > Из произвольной точки а взятой на стороне треугольника проводится прямая параллельнаяB.

Теорема 2. В треугольнике против большего угла лежит большая сторона.

1) Пусть в треугольнике АBС Из произвольной точки а взятой на стороне треугольника проводится прямая параллельнаяС > Из произвольной точки а взятой на стороне треугольника проводится прямая параллельнаяB. Докажем, что АВ > АС (см. рис. 108, а). Доказательство проведем методом от противного.

2) Предположим, что это не так. Тогда: либо АВ = АС, либо АВ Из произвольной точки а взятой на стороне треугольника проводится прямая параллельнаяC.

В каждом из этих случаев получаем противоречие с условием: Из произвольной точки а взятой на стороне треугольника проводится прямая параллельнаяC > Из произвольной точки а взятой на стороне треугольника проводится прямая параллельнаяB. Таким образом, сделанное предположение неверно и, значит, АВ > АС.

Из данной теоремы следует утверждение: в прямоугольном треугольнике катет меньше гипотенузы.

Действительно, гипотенуза лежит против прямого угла, а катет — против острого. Поскольку прямой угол больше острого, то по теореме 2 получаем, что гипотенуза больше катета.

Теорема 3 (признак равнобедренного треугольника). Если два угла треугольника равны, то треугольник равнобедренный.

Пусть в треугольнике два угла равны. Тогда равны стороны, лежащие против этих углов. В самом деле, если предположить, что одна из указанных сторон больше другой, то по теореме 1 угол, лежащий против этой стороны, будет больше угла, лежащего против другой стороны, что противоречит условию равенства углов.

Значит, наше предположение неверно и в треугольнике две стороны равны, т. е. треугольник является равнобедренным.

Неравенство треугольника

Докажем, что длина каждой стороны треугольника меньше суммы длин двух других сторон.

Теорема 4. Длина каждой стороны треугольника меньше суммы длин двух других его сторон.

1) Пусть ABC — произвольный треугольник. Докажем, например, что выполняется неравенство АВ Из произвольной точки а взятой на стороне треугольника проводится прямая параллельнаяl, следовательно, верно неравенство Из произвольной точки а взятой на стороне треугольника проводится прямая параллельнаяАВF > Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная2.

4) Так как в треугольнике против большего угла лежит большая сторона (теорема 2), то АВ

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Олимпиадные задания по математике 8 — 11 класс

Видео:✓ Как решать стереометрию | ЕГЭ-2023. Математика. Профильный уровень. Задание 13 | Борис ТрушинСкачать

✓ Как решать стереометрию | ЕГЭ-2023. Математика. Профильный уровень. Задание 13 | Борис Трушин

Олимпиадные задания по математике 8 — 11 класс

Видео:№45. Прямая а параллельна стороне ВС параллелограмма ABCD и не лежит в плоскости параллелограмма.Скачать

№45. Прямая а параллельна стороне ВС параллелограмма ABCD и не лежит в плоскости параллелограмма.

Олимпиадные задания по математике 8 класс

1. На доске была нарисована система координат и отмечены точки A(1;2) и B(3;1). Систему координат стерли. Восстановите ее по двум отмеченным точкам.

2. В некотором треугольнике биссектрисы двух внутренних углов продолжили до пересечения с описанной окружностью и получили две равные хорды. Верно ли, что треугольник равнобедренный?

3. В правильном шестиугольнике АВСDEF на прямой AF взята точка X так, что угол XСD = 45 o . Найдите угол FXE.

4. Около четырехугольника ABCD можно описать окружность. Точка p – основание перпендикуляра, опущенного из точки А на прямую ВС, Q – из А на DC, R – из D на АВ и Т – из D на ВС. Докажите, что точки p, Q, R и T лежат на одной окружности.

5. Восстановите остроугольный треугольник по ортоцентру и серединам двух сторон.

6. Противоположные стороны выпуклого шестиугольника ABCDEF параллельны. Назовем его «высотами» векторы с концами на прямых, содержащих противолежащие стороны, перпендикулярные им и направленные от AB к DE, от EF к BC и от CD к AF. Докажите, что вокруг этого шестиугольника можно описать окружность тогда и только тогда, когда сумма его «высот» равна нулевому вектору.

Видео:Задача 1. Построение параллелограммаСкачать

Задача 1. Построение параллелограмма

Олимпиадные задания по математике 8 класс

1. Биссектриса угла В и биссектриса внешнего угла D прямоугольника ABCD пересекают сторону AD и прямую АВ в точках М и К соответственно. Докажите, что отрезок МК равен и перпендикулярен диагонали прямоугольника.

2. В равнобедренном треугольнике АВС на боковой стороне ВС отмечена точка М так, что отрезок СМ равен высоте треугольника, проведенной к этой стороне, а на боковой стороне АВ отмечена точка К так, что угол КМС – прямой. Найдите угол АСК .

3. Из листа бумаги в клетку вырезали квадрат 2×2. Используя только линейку без делений и не выходя за пределы квадрата, разделите диагональ квадрата на 6 равных частей.

4. В трапеции ABCD : AB = BC = CD , CH – высота. Докажите, что перпендикуляр, опущенный из Н на АС , проходит через середину BD .

5. Пусть AA 1 и BB 1 – высоты неравнобедренного остроугольного треугольника АВС , М – середина АВ . Окружности, описанные около треугольников AMA 1 и BMB 1 пересекают прямые АС и ВС в точках К и L соответственно. Докажите, что К , М и L лежат на одной прямой.

6. Один треугольник лежит внутри другого. Докажите, что хотя бы одна из двух наименьших сторон (из шести) является стороной внутреннего треугольника.

Видео:✓ Все сюжеты по планиметрии из ЕГЭ за 50 минут | ЕГЭ. Задание 16. Профильный уровень | Борис ТрушинСкачать

✓ Все сюжеты по планиметрии из ЕГЭ за 50 минут | ЕГЭ. Задание 16. Профильный уровень | Борис Трушин

Олимпиадные задания по математике 9 класс

1. Постройте треугольник по стороне, противолежащему углу и медиане, проведенной к другой стороне ( исследование вопроса о количестве решений не требуется ).

2. В выпуклом четырехугольнике ABCD Ð ABC = 90 0 , Ð BAC = Ð CAD , AC = AD , DH — высота треугольника ACD . В каком отношении прямая BH делит отрезок CD ?

3. Внутри отрезка АС выбрана произвольная точка В и построены окружности с диаметрами АВ и ВС . На окружностях (в одной полуплоскости относительно АС ) выбраны соответственно точки M и L так, что Ð MBA = Ð LBC . Точки K и F отмечены соответственно на лучах ВМ и BL так, что BK = BC и BF = AB . Докажите, что точки M , K , F и L лежат на одной окружности.

4. В треугольнике ABC M — точка пересечения медиан, O — центр вписанной окружности, A’ , B’ , C’ — точки ее касания со сторонами BC , CA , AB соответственно. Докажите, что, если CA’ = AB , то прямые OM и AB перпендикулярны.

5. Дан треугольник АВС . Точка О 1 — центр прямоугольника ВСDE , построенного так, что сторона DE прямоугольника содержит вершину А треугольника. Точки О 2 и О 3 являются центрами прямоугольников, построенных аналогичным образом на сторонах АС и АВ соответственно. Докажите, что прямые АО 1 , ВО 2 и СО 3 пересекаются в одной точке.

6. На плоскости расположен круг. Какое наименьшее количество прямых надо провести, чтобы, симметрично отражая данный круг относительно этих прямых (в любом порядке конечное количество раз), можно было накрыть им любую заданную точку плоскости?

Видео:ЕГЭ. Математика. Основы стереометрии. ПрактикаСкачать

ЕГЭ. Математика. Основы стереометрии. Практика

Олимпиадные задания по математике 9 класс

9.1. В выпуклом четырехугольнике АВС D Е – середина CD , F – середина А D , K – точка пересечения АС и ВЕ . Докажите, что площадь треугольника BKF в два раза меньше площади треугольника АВС .

9.2. Постройте треугольник АВС по углу А и медианам, проведенным из вершин В и С .

9.3. Дан квадрат ABCD . Найдите геометрическое место точек M таких, что Ð AMB = Ð CMD .

9.4. Треугольник ABC вписан в окружность. Через точки A и B проведены касательные к этой окружности, которые пересекаются в точке p . Точки X и Y – ортогональные проекции точки p на прямые AC и BC . Докажите, что прямая XY перпендикулярна медиане треугольника ABC , проведенной из вершины C .

9.5. Диагонали вписанного четырёхугольника ABCD пересекаются в точке M , Ð AMB = 60 ° . На сторонах AD и BC во внешнюю сторону построены равносторонние треугольники ADK и BCL . Прямая KL пересекает описанную около ABCD окружность в точках p и Q . Докажите, что pK = LQ .

9.6. Длина каждой стороны и каждой не главной диагонали выпуклого шестиугольника не превосходит 1. Докажите, что в этом шестиугольнике найдется главная диагональ, длина которой не превосходит 2 деленное на корень из 3 .

Видео:Дополнительные построения с параллелограммом | Задачи 1-10 | Решение задач | ВолчкевичСкачать

Дополнительные построения с параллелограммом | Задачи 1-10 | Решение задач | Волчкевич

Олимпиадные задания по математике 9 класс

1. На рисунке изображен параллелограмм и отмечена точка p пересечения его диагоналей. Проведите через p прямую так, чтобы она разбила параллелограмм на две части, из которых можно сложить ромб.
Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная

2. Квадрат и прямоугольник одинакового периметра имеют общий угол. Докажите, что точка пересечения диагоналей прямоугольника лежит на диагонали квадрата.

4. Постройте треугольник по стороне, радиусу вписанной окружности и радиусу вневписанной окружности, касающейся этой стороны. (Исследование проводить не требуется.)

5. В некоторой точке круглого острова радиусом 1 км зарыт клад. На берегу острова стоит математик с прибором, который указывает направление на клад, когда расстояние до клада не превосходит 500 м. Кроме того, у математика есть карта острова, на которой он может фиксировать все свои перемещения, выполнять измерения и геометрические построения. Математик утверждает, что у него есть алгоритм, как добраться до клада, пройдя меньше 4 км. Может ли это быть правдой?

6. Фиксированы две окружности w1 и w2, одна их внешняя касательная l и одна их внутренняя касательная m. На прямой m выбирается точка X, а на прямой l строятся точки Y и Z так, что XY и XZ касаются w1 и w2 соответственно, а треугольник XYZ содержит окружности w1 и w2. Докажите, что центры окружностей, вписанных в треугольники XYZ , лежат на одной прямой.

Видео:Параллелограмм. Практическая часть - решение задачи. 8 класс.Скачать

Параллелограмм. Практическая часть - решение задачи. 8 класс.

Олимпиадные задания по математике 10 класс

10.1. Е и F – середины сторон ВС и AD выпуклого четырехугольника АВС D . Докажите, что отрезок EF делит диагонали АС и BD в одном и том же отношении.

10.2. Существует ли в пространстве замкнутая самопересекающаяся ломаная, которая пересекает каждое свое звено ровно один раз, причем в его середине?

10.3. На доске была нарисована окружность с отмеченным центром, вписанный в нее четырехугольник, и окружность, вписанная в него, также с отмеченным центром. Затем стерли четырехугольник (сохранив одну вершину) и вписанную окружность (сохранив ее центр). Восстановите какую-нибудь из стертых вершин четырехугольника, пользуясь только линейкой и проведя не более шести линий.

10.4. В треугольнике АВС : М – точка пересечения медиан, О – центр вписанной окружности. Докажите, что если прямая ОМ параллельна стороне ВС , то точка О равноудалена от сторон АВ и АС .

10.5. Трапеция АВС D с основаниями AB и CD вписана в окружность. Докажите, что четырехугольник, образованный ортогональными проекциями любой точки этой окружности на прямые AC , BC , AD и BD , является вписанным.

10.6. В тетраэдре DABC : Ð ACB = Ð ADB , ( С D ) ^ ( АВС ). В треугольнике АВС дана высота h , проведенная к стороне АВ , и расстояние d от центра описанной окружности до этой стороны. Найдите длину CD .

Видео:Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть I)Скачать

Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть I)

Олимпиадные задания по математике 10 класс

1. Каждый из двух подобных треугольников разрезали на два треугольника так, что одна из получившихся частей одного треугольника подобна одной из частей другого треугольника. Верно ли, что оставшиеся части также подобны?

2. Даны радиусы r и R двух непересекающихся окружностей. Общие внутренние касательные этих окружностей перпендикулярны. Найдите площадь треугольника, ограниченного этими касательными, а также общей внешней касательной.

3. Дан четырехугольник ABCD. A’, B’, C’ и D’ – середины сторон BC, CD, DA и AB соответственно. Известно, что AA’ = CC’ и BB’ = DD’. Верно ли, что ABCD параллелограмм?

4. В треугольнике АВС угол А равен 120 o . Докажите, что расстояние от центра описанной окружности до ортоцентра равно АВ + АС.

6. Есть два платка: один в форме квадрата, другой – в форме правильного треугольника, причем их периметры одинаковы. Существует ли многогранник, который можно полностью оклеить этими двумя платками без наложений (платки можно сгибать, но нельзя резать)?

6. Дан треугольник ABC и точки p и Q. Известно, что треугольники, образованные проекциями p и Q на стороны ABC, подобны (соответствуют друг другу вершины, лежащие на одних и тех же сторонах исходного треугольника). Докажите, что прямая pQ проходит через центр описанной окружности треугольника ABC.

Видео:35. Геометрия на ЕГЭ по математике. Трапеция.Скачать

35. Геометрия на ЕГЭ по математике. Трапеция.

Олимпиадные задания по математике 11 класс

1. AD и BE – высоты треугольника АВС . Оказалось, что точка C’ , симметричная вершине С относительно середины отрезка DE , лежит на стороне AB . Докажите, что АВ – касательная к окружности, описанной около треугольника DEC’ .

2. Прямая а пересекает плоскость α . Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от а и не пересекающих a. Верно ли, что а перпендикулярна α ?

3. Дана неравнобокая трапеция ABCD ( AB || CD ). Произвольная окружность, проходящая через точки А и В , пересекает боковые стороны трапеции в точках p и Q , а диагонали – в точках M и N . Докажите, что прямые pQ , MN и CD пересекаются в одной точке.

4. Докажите, что любой жесткий плоский треугольник T площади меньше четырёх можно просунуть сквозь треугольную дырку Q площади 3.

5. В выпуклом четырехугольнике ABCD : AC ⊥ BD , ∠ BCA = 10°, ∠ BDA = 20°, ∠ BAC = 40°. Найдите ∠ BDC . ( Ответ выразите в градусах. )

6. Пусть AA 1, BB 1 и CC 1 – высоты неравнобедренного остроугольного треугольника АВС ; окружности, описанные около треугольников АВС и A 1 B 1 C , вторично пересекаются в точке Р , Z – точка пересечения касательных к описанной окружности треугольника АВС , проведённых в точках А и В . Докажите, что прямые АР , ВС и ZC 1 пересекаются в одной точке.

Видео:8 класс, 4 урок, ПараллелограммСкачать

8 класс, 4 урок, Параллелограмм

Олимпиадные задания по математике 11 класс

1. Существуют ли два таких четырехугольника, что стороны первого меньше соответствующих сторон второго, а соответствующие диагонали больше?

2. Трапеция ABCD и параллелограмм MBDK расположены так, что стороны параллелограмма параллельны диагоналям трапеции (см. рис.). Докажите, что площадь зеленой части равна сумме площадей синих частей.
Из произвольной точки а взятой на стороне треугольника проводится прямая параллельная

3. В остроугольном треугольнике АВС проведены высоты АА1 и ВВ1. Докажите, что перпендикуляр, опущенный из точки касания вписанной окружности со стороной ВС на прямую АС, проходит через центр вписанной окружности треугольника А1СВ1.

4. На медианах треугольника как на диаметрах построены три окружности. Известно, что они попарно пересекаются. Пусть C1 — более удаленная от вершины C точка пересечения окружностей, построенных на медианах AM1 и BM2. Точки A1 и B1 определяются аналогично. Докажите, что прямые АА1, ВВ1 и СС1 пересекаются в одной точке.

5. Докажите, что у любого выпуклого многогранника найдутся три ребра, из которых можно составить треугольник.

6. К двум окружностям w1 и w2, пересекающимся в точках А и В, проведена их общая касательная CD (C и D — точки касания соответственно, точка B ближе к прямой CD, чем А). Прямая, проходящая через А, вторично пересекает w1 и w2 в точках К и L соответственно (A лежит между K и L). Прямые KC и LD пересекаются в точке p. Докажите, что РВ — симедиана треугольника KpL (прямая, симметричная медиане относительно биссектрисы).

Олимпиадные задания по математике для учащихся 1-11 классов с решением и ответами:

🎥 Видео

Противоположные стороны параллелограмма равны 8 клСкачать

Противоположные стороны параллелограмма равны 8 кл

Средняя линия треугольника | Задачи 21-30 | Решение задач | Волчкевич | Уроки геометрии 7-8 классСкачать

Средняя линия треугольника | Задачи 21-30 | Решение задач | Волчкевич | Уроки геометрии 7-8 класс

Все типы 15 задания ОГЭ 2022 математика | Геометрия на ОГЭСкачать

Все типы 15 задания ОГЭ 2022 математика | Геометрия на ОГЭ

№16 ЕГЭ 2023 по математике. Я нашел метод-убийцу планиметрии. Поем под гитару!Скачать

№16 ЕГЭ 2023 по математике. Я нашел метод-убийцу планиметрии. Поем под гитару!

8 класс, 13 урок, Площадь параллелограммаСкачать

8 класс, 13 урок, Площадь параллелограмма

ЕГЭ. Математика. Промежуточный срез № 6 по теме «Планиметрия». ПовторениеСкачать

ЕГЭ. Математика. Промежуточный срез № 6 по теме «Планиметрия». Повторение

9 задач по планиметрии из реального ЕГЭ | Задание 16. Математика | #ТрушинLive #024 | Борис Трушин |Скачать

9 задач по планиметрии из реального ЕГЭ | Задание 16. Математика | #ТрушинLive #024 | Борис Трушин |
Поделиться или сохранить к себе: