Как найти дугу окружности заключенную в угол

Углы, связанные с окружностью
Как найти дугу окружности заключенную в уголВписанные и центральные углы
Как найти дугу окружности заключенную в уголУглы, образованные хордами, касательными и секущими
Как найти дугу окружности заключенную в уголДоказательства теорем об углах, связанных с окружностью

Видео:Длина дуги окружности. 9 класс.Скачать

Длина дуги окружности. 9 класс.

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Как найти дугу окружности заключенную в угол

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Как найти дугу окружности заключенную в угол

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголКак найти дугу окружности заключенную в угол
Вписанный уголКак найти дугу окружности заключенную в уголВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголКак найти дугу окружности заключенную в уголВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголКак найти дугу окружности заключенную в уголДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголКак найти дугу окружности заключенную в уголВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаКак найти дугу окружности заключенную в угол

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Как найти дугу окружности заключенную в угол

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Как найти дугу окружности заключенную в угол

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Как найти дугу окружности заключенную в угол

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Как найти дугу окружности заключенную в угол

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Как найти дугу окружности заключенную в угол

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Как найти дугу окружности заключенную в угол

Видео:8 класс, 33 урок, Градусная мера дуги окружностиСкачать

8 класс, 33 урок, Градусная мера дуги окружности

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиКак найти дугу окружности заключенную в уголКак найти дугу окружности заключенную в угол
Угол, образованный секущими, которые пересекаются вне кругаКак найти дугу окружности заключенную в уголКак найти дугу окружности заключенную в угол
Угол, образованный касательной и хордой, проходящей через точку касанияКак найти дугу окружности заключенную в уголКак найти дугу окружности заключенную в угол
Угол, образованный касательной и секущейКак найти дугу окружности заключенную в уголКак найти дугу окружности заключенную в угол
Угол, образованный двумя касательными к окружностиКак найти дугу окружности заключенную в уголКак найти дугу окружности заключенную в угол

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

Угол, образованный пересекающимися хордами хордами
Как найти дугу окружности заключенную в угол
Формула: Как найти дугу окружности заключенную в угол
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Как найти дугу окружности заключенную в угол

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Как найти дугу окружности заключенную в угол
Формула: Как найти дугу окружности заключенную в угол
Угол, образованный касательной и секущей касательной и секущей
Формула: Как найти дугу окружности заключенную в угол

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Как найти дугу окружности заключенную в угол

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Задача6 №27884 ЕГЭ по математике. Урок 121Скачать

Задача6 №27884 ЕГЭ по математике. Урок 121

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Как найти дугу окружности заключенную в угол

В этом случае справедливы равенства

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Как найти дугу окружности заключенную в угол

В этом случае справедливы равенства

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Как найти дугу окружности заключенную в угол

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:Как найти длину дуги окружности центрального угла. Геометрия 8-9 классСкачать

Как найти длину дуги окружности центрального угла. Геометрия 8-9 класс

Как найти дугу окружности заключенную в угол

Как найти дугу окружности заключенную в угол

Угол ACO равен Как найти дугу окружности заключенную в уголЕго сторона CA касается окружности. Найдите градусную величину дуги AD окружности, заключенной внутри этого угла. Ответ дайте в градусах.

Это задание ещё не решено, приводим решение прототипа.

Угол ACO равен 24°. Его сторона CA касается окружности. Найдите градусную величину дуги AD окружности, заключенной внутри этого угла. Ответ дайте в градусах.

Заметим, что DB — диаметр окружности. Тогда точка A делит дугу DB на дуги x и 180° − x. Угол между двумя секущими (или между секущей и касательной) равен полуразности высекаемых ими дуг:

Как найти дугу окружности заключенную в угол

Приведём другое решение:

Касательная к окружности перпендикулярна радиусу, центральный угол равен дуге, на которую он опирается, значит, треугольник OAC — прямоугольный и

Видео:Окружнось, дуга, длина дуги, центральный угол.Скачать

Окружнось, дуга, длина дуги, центральный угол.

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Как найти дугу окружности заключенную в угол

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Видео:Хорда АВ стягивает дугу окружности в 40 градусов. Найдите угол АВС между этой хордой и касательной..Скачать

Хорда АВ стягивает дугу окружности в 40 градусов. Найдите угол АВС между этой хордой и касательной..

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Как найти дугу окружности заключенную в угол

Видео:ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружностиСкачать

ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружности

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Видео:Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)Скачать

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Видео:Найдите угол АСО, если сторона СА касается окружностиСкачать

Найдите угол АСО, если сторона СА касается окружности

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Видео:Определение центра дуги окружности, построение окружности по 3 точкамСкачать

Определение центра дуги окружности, построение окружности по 3 точкам

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Видео:Задача 6 №27879 ЕГЭ по математике. Урок 120Скачать

Задача 6 №27879 ЕГЭ по математике. Урок 120

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Видео:Окружнось. Зависимость длины хорды, от длины дуги.Скачать

Окружнось. Зависимость длины хорды, от длины дуги.

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

💥 Видео

Задача 6 №27859 ЕГЭ по математике. Урок 104Скачать

Задача 6 №27859 ЕГЭ по математике. Урок 104

Вписанные углы в окружностиСкачать

Вписанные углы в окружности

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Задача 6 №27886 ЕГЭ по математике. Урок 123Скачать

Задача 6 №27886 ЕГЭ по математике. Урок 123
Поделиться или сохранить к себе: